112 research outputs found

    AFM, SEM and TEM Studies on Porous Anodic Alumina

    Get PDF
    Porous anodic alumina (PAA) has been intensively studied in past decade due to its applications for fabricating nanostructured materials. Since PAA’s pore diameter, thickness and shape vary too much, a systematical study on the methods of morphology characterization is meaningful and essential for its proper development and utilization. In this paper, we present detailed AFM, SEM and TEM studies on PAA and its evolvements with abundant microstructures, and discuss the advantages and disadvantages of each method. The sample preparation, testing skills and morphology analysis are discussed, especially on the differentiation during characterizing complex cross-sections and ultrasmall nanopores. The versatility of PAAs is also demonstrated by the diversity of PAAs’ microstructure

    Epigenetic alterations differ in phenotypically distinct human neuroblastoma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic aberrations and a CpG island methylator phenotype have been shown to be associated with poor outcomes in children with neuroblastoma (NB). Seven cancer related genes (<it>THBS-1, CASP8, HIN-1, TIG-1, BLU, SPARC</it>, and <it>HIC-1</it>) that have been shown to have epigenetic changes in adult cancers and play important roles in the regulation of angiogenesis, tumor growth, and apoptosis were analyzed to investigate the role epigenetic alterations play in determining NB phenotype.</p> <p>Methods</p> <p>Two NB cell lines (tumorigenic LA1-55n and non-tumorigenic LA1-5s) that differ in their ability to form colonies in soft agar and tumors in nude mice were used. Quantitative RNA expression analyses were performed on seven genes in LA1-5s, LA1-55n and 5-Aza-dC treated LA1-55n NB cell lines. The methylation status around <it>THBS-1, HIN-1, TIG-1 </it>and <it>CASP8 </it>promoters was examined using methylation specific PCR. Chromatin immunoprecipitation assay was used to examine histone modifications along the <it>THBS-1 </it>promoter. Luciferase assay was used to determine <it>THBS-1 </it>promoter activity. Cell proliferation assay was used to examine the effect of 5-Aza-dC on NB cell growth. The soft agar assay was used to determine the tumorigenicity.</p> <p>Results</p> <p>Promoter methylation values for <it>THBS-1</it>, <it>HIN-1</it>, <it>TIG-1</it>, and <it>CASP8 </it>were higher in LA1-55n cells compared to LA1-5s cells. Consistent with the promoter methylation status, lower levels of gene expression were detected in the LA1-55n cells. Histone marks associated with repressive chromatin states (H3K9Me3, H3K27Me3, and H3K4Me3) were identified in the <it>THBS-1 </it>promoter region in the LA1-55n cells, but not the LA1-5s cells. In contrast, the three histone codes associated with an active chromatin state (acetyl H3, acetyl H4, and H3K4Me3) were present in the <it>THBS-1 </it>promoter region in LA1-5s cells, but not the LA1-55n cells, suggesting that an accessible chromatin structure is important for <it>THBS-1 </it>expression. We also show that 5-Aza-dC treatment of LA1-55n cells alters the DNA methylation status and the histone code in the <it>THBS-1 </it>promoter modifies cell morphology, and inhibits their ability to form colonies in soft agar.</p> <p>Conclusion</p> <p>Our results suggest that epigenetic aberrations contribute to NB phenotype, and that tumorigenic properties can be inhibited by reversing the epigenetic changes with 5-Aza-dC.</p

    Shell-Controlled Photoluminescence in CdSe/CNT Nanohybrids

    Get PDF
    A new type of nanohybrids containing carbon nanotubes (CNTs) and CdSe quantum dots (QDs) was prepared using an electrostatic self-assembly method. The CdSe QDs were capped by various mercaptocarboxylic acids, including thioglycolic acid (TGA), dihydrolipoic acid (DHLA) and mercaptoundecanoic acid (MUA), which provide shell thicknesses of ~5.2, 10.6 and 15.2 Ã…, respectively. The surface-modified CdSe QDs are then self-assembled onto aridine orange-modified CNTs via electrostatic interaction to give CdSe/CNT nanohybrids. The photoluminescence (PL) efficiencies of the obtained nanohybrids increase significantly with the increase of the shell thickness, which is attributed to a distance-dependent photo-induced charge-transfer mechanism. This work demonstrates a simple mean for fine tuning the PL properties of the CdSe/CNT nanohybrids and gains new insights to the photo-induced charge transfer in such nanostructures

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψ′→π+π−J/ψ(J/ψ→γppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ′\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861−13+6(stat)−26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    A strategy for emergency treatment of Schistosoma japonicum-infested water

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis japonica, caused by contact with <it>Schistosoma japonicum </it>cercaria-infested water when washing, bathing or production, remains a major public-health concern in China. The purpose of the present study was to investigate the effect of a suspension concentrate of niclosamide (SCN) on killing cercaria of <it>S. japonicum </it>that float on the water surface, and its toxicity to fish, so as to establish an emergency-treatment intervention for rapidly killing cercaria and eliminating water infectivity.</p> <p>Results</p> <p>At 30 min after spraying 100 mg/L SCN, with niclosamide dosages of 0.01, 0.02, 0.03, 0.04 g/m<sup>2</sup>, the water infectivity reduced significantly and no infectivity was found at 60 min after spraying SCN. The surface of static water was sprayed with 100 mg/L SCN, the peak concentration was found at 0 min, and the solution diffused to site with a water depth of 10 cm after 10 min. 30 min later, SCN diffused to the whole water body, and distributed evenly. After spraying 100 mg/L SCN onto the surface of the water with a volume of(3.14 × 20<sup>2</sup>×50)cm<sup>3</sup>, with niclosamide dosages of 0.02 g/m<sup>2</sup>, 96 h later, no death of zebra fish was observed.</p> <p>Conclusions</p> <p>By spraying 100 mg/L SCN, with a niclosamide dosage of 0.02 g/m<sup>2 </sup>onto the surface of <it>S. japonicum</it>-infested water, infectivity of the water can be eliminated after 30-60 min, and there is no evident toxicity to fish. This cercaria-killing method, as an emergency-treatment intervention for infested water, can be applied in those forecasting and early warning systems for schistosomiasis.</p

    Fermentation by Lactobacillus enhances anti-inflammatory effect of Oyaksungisan on LPS-stimulated RAW 264.7 mouse macrophage cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oyaksungisan (OY) has been used as a traditional drug in east-Asian countries. However, its effect on inflammation still remains unknown. In this study, to provide insight into the biological effects of OY and OY fermented by <it>Lactobacillus</it>, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in the RAW 264.7 murine macrophage cells.</p> <p>Methods</p> <p>The investigation was focused on whether OY and fermented OYs could inhibit the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin (PG) E<sub>2 </sub>as well as the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, interleukin (IL)-6, nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells.</p> <p>Results</p> <p>We found that OY inhibits a little LPS-induced NO, PGE<sub>2</sub>, TNF-α and IL-6 productions as well as the expressions of iNOS and COX-2. Interestingly, the fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, the fermented OYs exhibited elevated inhibition on the translocation of NF-κB p65 through reduced IκBα degradation as well as the phosphorylations of extracellular signal-regulated kinase (ERK), p38 and c-Jun NH<sub>2</sub>-terminal kinase (JNK) MAPKs than untreated control or original OY.</p> <p>Conclusions</p> <p>Finally, the fermentation by <it>Lactobacillus </it>potentiates the anti-inflammatory effect of OY by inhibiting NF-κB and MAPK activity in the macrophage cells.</p

    Cattle Mammary Bioreactor Generated by a Novel Procedure of Transgenic Cloning for Large-Scale Production of Functional Human Lactoferrin

    Get PDF
    Large-scale production of biopharmaceuticals by current bioreactor techniques is limited by low transgenic efficiency and low expression of foreign proteins. In general, a bacterial artificial chromosome (BAC) harboring most regulatory elements is capable of overcoming the limitations, but transferring BAC into donor cells is difficult. We describe here the use of cattle mammary bioreactor to produce functional recombinant human lactoferrin (rhLF) by a novel procedure of transgenic cloning, which employs microinjection to generate transgenic somatic cells as donor cells. Bovine fibroblast cells were co-microinjected for the first time with a 150-kb BAC carrying the human lactoferrin gene and a marker gene. The resulting transfection efficiency of up to 15.79×10−2 percent was notably higher than that of electroporation and lipofection. Following somatic cell nuclear transfer, we obtained two transgenic cows that secreted rhLF at high levels, 2.5 g/l and 3.4 g/l, respectively. The rhLF had a similar pattern of glycosylation and proteolytic susceptibility as the natural human counterpart. Biochemical analysis revealed that the iron-binding and releasing properties of rhLF were identical to that of native hLF. Importantly, an antibacterial experiment further demonstrated that rhLF was functional. Our results indicate that co-microinjection with a BAC and a marker gene into donor cells for somatic cell cloning indeed improves transgenic efficiency. Moreover, the cattle mammary bioreactors generated with this novel procedure produce functional rhLF on an industrial scale

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio

    First observation of the decays χcJ→π0π0π0π0

    Get PDF
    We present a study of the P-wave spin-triplet charmonium χ cJ decays (J=0, 1, 2) into π0π0π0π0. The analysis is based on 106×106 ψ⊃′ decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the π0π0π0π0 hadronic final state is observed for the first time. We measure the branching fractions B(χ c0→π0π0π0π0)=(3.34±0. 06±0.44)×10⊃-3, B(χ c1→π0π0π0π0) =(0.57±0.03±0.08)×10⊃-3, and B(χ c2→π0π0π0π0)=(1.21±0.05±0.16) ×10⊃-3, where the uncertainties are statistical and systematical, respectively. © 2011 American Physical Society.published_or_final_versio
    • …
    corecore