12 research outputs found

    Perfluorinated surfactants as model charged systems for understanding the effect of confinement on proton transport and water mobility in fuel cell membranes. A study by QENS

    No full text
    International audienceWe have investigated the dynamical properties of water confined in mesomorphous phases of perfluorinated sulfonic surfactants. These systems mimic the physico-chemical properties of the perfluorinated Nafion membranes which are used as electrolyte in fuel cells. As the surfactants offer the advantage to self-assemble in well defined organized phases (such as hexagonal and lamellar phases), they could be used as model charged systems to understand the structure-transport relationship in complex real materials. Indeed, the geometry as well as the typical confinement size can be easily controlled and tuned through water concentration and temperature. A QENS study of hexagonal and lamellar phases has been performed on both time-of-flight and backscattering spectrometers to cover a dynamic range from picoseconds to nanoseconds. Analysis of the data with localized translational diffusion models shows the existence of a strong confinement effect that depends on the geometry. Typical confinement sizes and diffusion coefficients can be extracted from the QENS analysis and compared to the Nafion membrane

    Enhanced ionic liquid mobility induced by confinement in 1D CNT membranes

    No full text
    International audienceWater confined within carbon nanotubes (CNT) exhibits tremendous enhanced transport properties. Here, we extend this result to ionic liquids (IL) confined in vertically aligned CNT membranes. Under confinement, the IL self-diffusion coefficient is increased by a factor 3 compared to its bulk reference. This could lead to high power battery separators

    Generation of thermal scattering laws with the CINEL code

    No full text
    The thermal scattering laws (TSL) take into account the crystalline structure and atomic motions of isotopes bound in materials. This paper presents the CINEL code, which was developed to generate temperature-dependent TSL for solid, liquid and free gas materials of interest for nuclear reactors. CINEL is able to calculate TSL from the phonon density of states (PDOS) of materials under the Gaussian-Incoherent approximations. The PDOS can be obtained by using theoretical approaches (e.g., ab initio density functional theory and molecular dynamics) or experimental results. In this work, the PDOS presented in the ENDF/BVIII.0 and NJOY-NCrystal libraries were used for numerical validation purposes. The CINEL results are in good agreement with those reported in these databases, even in the specific cases of TSL with the newly mixed elastic format. The coding flexibility offered by Python using the JupyterLab interface allowed to investigate limits of physical models reported in the literature, such as a four-site model for UO2, anharmonic behaviors of oxygen atoms bound in a Fm3m structure, texture in Zry4 samples and jump corrections in a roto-translational diffusion model for liquid water. The use of graphic processing units (GPU) is a necessity to perform calculations in a few minutes. The performances of the CINEL code is illustrated with the results obtained on actinide oxides having a Fm3m structure (UO2, ThO2, NpO2 and PuO2), low enriched fuel (UMo), cladding (Zry4) and moderators (H2O with a specific emphasis on ice)
    corecore