2,977 research outputs found
Site-centered impurities in quantum spin chains
The magnetic behavior of antiferromagnetic spin 1/2 chains with site-centered
impurities in a magnetic field is investigated. The effect of impurities is
implemented by considering different situations of both diagonal and
off-diagonal disorder. The resulting magnetization curves present a wide
variety of plateaux, whose position strongly depends on the kind of disorder
considered. The relevance of these results to experimental situations is also
discussed.Comment: 6 pages, 6 figure
Dynamical obstruction in a constrained system and its realization in lattices of superconducting devices
Hard constraints imposed in statistical mechanics models can lead to
interesting thermodynamical behaviors, but may at the same time raise
obstructions in the thoroughfare to thermal equilibration. Here we study a
variant of Baxter's 3-color model in which local interactions and defects are
included, and discuss its connection to triangular arrays of Josephson
junctions of superconductors and \textit{kagom\'e} networks of superconducting
wires. The model is equivalent to an Ising model in a hexagonal lattice with
the constraint that the magnetization of each hexagon is or 0. For
ferromagnetic interactions, we find that the system is critical for a range of
temperatures (critical line) that terminates when it undergoes an exotic first
order phase transition with a jump from a zero magnetization state into the
fully magnetized state at finite temperature. Dynamically, however, we find
that the system becomes frozen into domains. The domain walls are made of
perfectly straight segments, and domain growth appears frozen within the time
scales studied with Monte Carlo simulations. This dynamical obstruction has its
origin in the topology of the allowed reconfigurations in phase space, which
consist of updates of closed loops of spins. As a consequence of the dynamical
obstruction, there exists a dynamical temperature, lower than the (avoided)
static critical temperature, at which the system is seen to jump from a
``supercooled liquid'' to a ``polycrystalline'' phase. In contrast, for
antiferromagnetic interactions, we argue that the system orders for
infinitesimal coupling because of the constraint, and we observe no interesting
dynamical effects
Quantum phase transitions in three-leg spin tubes
We investigate the properties of a three-leg quantum spin tube using several
techniques such as the density matrix renormalization group method, strong
coupling approaches and the non linear sigma model. For integer spins S, the
model proves to exhibit a particularly rich phase diagram consisting of an
ensemble of 2S phase transitions. They can be accurately identified by the
behavior of a non local string order parameter associated to the breaking of a
hidden symmetry in the Hamiltonian. The nature of these transitions are further
elucidated within the different approaches. We carry a detailed DMRG analysis
in the specific cases S = 1. The numerical data confirm the existence of two
Haldane phases with broken hidden symmetry separated by a trivial singlet
state. The study of the gap and of the von Neumann entropy suggest a first
order phase transition but at the close proximity of a tricritical point
separating a gapless and a first order transition line in the phase diagram of
the quantum spin tube.Comment: 20 pages, 18 figure
Combined analytical and numerical approach to magnetization plateaux in one-dimensional spin tube antiferromagnets
In this paper, we investigate the properties of frustrated three-leg spin
tubes under a magnetic field. We concentrate on two kind of geometries for
these tubes, one of which is relevant for the compound
. We combine an analytical path integral
approach with a strong coupling approach, as well as large-scale Density Matrix
Renormalization Groups (DMRG) simulations, to identify the presence of plateaux
in the magnetization curve as a function of the value of spin . We also
investigate the issue of gapless non-magnetic excitations on some plateaux,
dubbed chirality degrees of freedom for both tubes.Comment: 17 page
Ground states of quantum kagome antiferromagnets in a magnetic field
We study the ground state properties of a quantum antiferromagnet in the
kagome lattice in the presence of a magnetic field, paying particular attention
to the stability of the plateau at magnetization 1/3 of saturation. While the
plateau is reinforced by certain deformations of the lattice, like the
introduction of structural defect lines and against an Ising anisotropy, ground
state correlations are seen to be quite different and the undistorted SU(2)
case appears to be rather special.Comment: 3 pages, 3 figures, contribution to the Japanese-French symposium on
"Quantum magnetism in spin, charge and orbital systems", Paris 1-4 October
200
Bosonization and density-matrix renormalization group studies of Fulde-Ferrell-Larkin-Ovchinnikov phase and irrational magnetization plateaus in coupled chains
We review the properties of two coupled fermionic chains, or ladders, under a
magnetic field parallel to the lattice plane. Results are computed by
complementary analytical (bosonization) and numerical (density-matrix
renormalization group) methods which allows a systematic comparison. Limiting
cases such as coupled bands and coupled chains regimes are discussed. We
particularly focus on the evolution of the superconducting correlations under
increasing field and on the presence of irrational magnetization plateaus. We
found the existence of large doping-dependent magnetization plateaus in the
weakly-interacting and strong-coupling limits and in the non-trivial case of
isotropic couplings. We report on the existence of extended
Fulde-Ferrell-Larkin-Ovchinnikov phases within the isotropic t-J and Hubbard
models, deduced from the evolution of different observables under magnetic
field. Emphasis is put on the variety of superconducting order parameters
present at high magnetic field. We have also computed the evolution of the
Luttinger exponent corresponding to the ungaped spin mode appearing at finite
magnetization. In the coupled chain regime, the possibility of having polarized
triplet pairing under high field is predicted by bosonization.Comment: 18 pages, 19 figure
Selection of factorizable ground state in a frustrated spin tube: Order by disorder and hidden ferromagnetism
The interplay between frustration and quantum fluctuation in magnetic systems
is known to be the origin of many exotic states in condensed matter physics. In
this paper, we consider a frustrated four-leg spin tube under a magnetic field.
This system is a prototype to study the emergence of a nonmagnetic ground state
factorizable into local states and the associated order parameter without
quantum fluctuation, that appears in a wide variety of frustrated systems. The
one-dimensional nature of the system allows us to apply various techniques: a
path-integral formulation based on the notion of order by disorder,
strong-coupling analysis where magnetic excitations are gapped, and
density-matrix renormalization group. All methods point toward an interesting
property of the ground state in the magnetization plateaus, namely, a quantized
value of relative magnetizations between different sublattices (spin imbalance)
and an almost perfect factorization of the ground state
- …