4 research outputs found

    Design, synthesis and antiparasitic evaluation of click phospholipids

    Get PDF
    A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure\u2013activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 \ub5M. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases

    Steroidal Cardiac Na+/K (+) ATPase Inhibitors Exhibit Strong Anti-Cancer Potential in vitro and in Prostate and Lung Cancer Xenografts in vivo

    No full text
    Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of congestive heart failure. Recent data with inotropic drugs such as digoxin & digitoxin (digitalis) suggest a potent anti-cancer action of these drugs and promote Na+/K+ ATPase as a novel therapeutic target in cancer. However, digitalis have narrow therapeutic indices, are pro-arrhythmic and are considered non-developable drugs by the pharmaceutical industry. On the contrary, a series of recently-developed steroidal inhibitors showed better pharmacological properties and clinical activities in cardiac patients. Their anti-cancer activity however, remained unknown. In this study, we synthesized seventeen steroidal cardiac inhibitors and explored for the first time their anti-cancer activity in vitro and in vivo. Our results indicate potent anti-cancer actions of steroidal cardiac inhibitors in multiple cell lines from different tumor panels including multi-drug resistant cells. Furthermore, the most potent compound identified in our studies, the 3-[(R)-3-pyrrolidinyl] oxime derivative 3, showed outstanding potencies (as measured by GI(50), TGI and LC50 values) in most cells in vitro, was selectively cytotoxic in cancer versus normal cells showing a therapeutic index of 31.7 and exhibited significant tumor growth inhibition in prostate and lung xenografts in vivo. Collectively, our results suggest that previously described cardiac Na+/K+ ATPase inhibitors have potent anti-cancer actions and may thus constitute strong re-purposing candidates for further cancer drug development

    Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: In vitro and in vivo properties and cross talk with the membrane androgen receptor

    No full text
    Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of various cardiac conditions. Recent published data with Na+/K+ ATPase inhibitors suggest a potent anti-cancer action of these agents in multiple indications. In the present study, we focus on istaroxime, a Na+/K+ ATPase inhibitor that has shown favorable safety and efficacy properties in cardiac phase II clinical trials. Our experiments in 22 cancer cell lines and in prostate tumors in vivo proved the strong anti-cancer action of this compound. Istaroxime induced apoptosis, affected the key proliferative and apoptotic mediators c-Myc and caspase-3 and modified actin cystoskeleton dynamics and RhoA activity in prostate cancer cells. Interestingly, istaroxime was capable of binding to mAR, a membrane receptor mediating rapid, non-genomic actions of steroids in prostate and other cells. These results support a multi-level action of Na+/K+ ATPase inhibitors in cancer cells and collectively validate istaroxime as a strong re-purposing candidate for further cancer drug development

    A Steroidal Na+/K+ ATPase Inhibitor Triggers Pro-apoptotic Signaling and Induces Apoptosis in Prostate and Lung Tumor Cells

    No full text
    Recently we have reported potent anti-cancer actions of various steroidal Na+/K+ ATPase inhibitors in multiple cell lines. Furthermore, the most powerful compound identified in this study, the 3-[(R)-3-pyrrolidinyl]oxime derivative (3-R-POD), was highly effective in various tumor cell lines in vitro, and exhibited significant tumor growth inhibition in prostate and lung xenografts in vivo. In the present study we have addressed the molecular mechanisms implicated in the anti-cancer actions of 3-R-POD. We report here that 3-R-POD induces strong apoptotic responses in A549 lung-and in DU145 prostate-cancer cells. These effects are accompanied by significant upregulation of caspase-3 activity. Focussing on A549 cells, we further demonstrate late downregulation of BCL-2- and upregulation of c-Fos-gene transcription. In addition, the steroidal Na+/K+ ATPase inhibitor induced late de-phosphorylation of Focal Adhesion Kinase (FAK) and activation of p38 MAPK. Our findings suggest that the steroidal Na+/K+ ATPase inhibitor 3-R-POD induces apoptosis, paralleled by altered BCL-2 and c-Fos gene transcription, inhibition of the pro-survival FAK signalling, up-regulation of the pro-apoptotic p38 MAPK pathway and stimulation of caspase-3 activity
    corecore