235 research outputs found

    Anisotropic magnetic field responses of ferroelectric polarization in a trigonal multiferroic CuFe1-xAlxO2 (x=0.015)

    Full text link
    We have investigated magnetic field dependences of a ferroelectric incommensurate-helimagnetic order in a trigonal magneto-electric (ME) multiferroic CuFe1-xAlxO2 with x=0.015, which exhibits the ferroelectric phase as a ground state, by means of neutron diffraction, magnetization and dielectric polarization measurements under magnetic fields applied along various directions. From the present results, we have established the H-T magnetic phase diagrams for the three principal directions of magnetic fields; (i) parallel to the c axis, (ii) parallel to the helical axis, and (iii) perpendicular to the c and the helical axes. While the previous dielectric polarization (P) measurements on CuFe1-xGaxO2 with x=0.035 have demonstrated that the magnetic field dependence of the `magnetic domain structure' results in distinct magnetic field responses of P [S. Seki et al., Phys. Rev. Lett., 103 237601 (2009)], the present study have revealed that the anisotropic magnetic field dependence of the ferroelectric helimagnetic order `in each magnetic domain' can be also a source of a variety of magnetic field responses of P in CuFe1-xAxO2 systems (A=Al, Ga).Comment: 11 pages, 9 figures, accepted for publication in Phys. Rev.

    Current use pesticides in soil and air from two agricultural sites in South Africa: implications for environmental fate and human exposure

    Get PDF
    Concerns about the possible negative impacts of current use pesticides (CUPs) for both the environment and human health have increased worldwide. However, the knowledge on the occurrence of CUPs in soil and air and the related human exposure in Africa is limited. This study investigated the presence of 30 CUPs in soil and air at two distinct agricultural sites in South Africa and estimated the human exposure and related risks to rural residents via soil ingestion and inhalation (using hazard quotients, hazard index and relative potency factors). We collected 12 soil and 14 air samples over seven days during the main pesticide application season in 2018. All samples were extracted, purified and analyzed by high-performance liquid chromatography coupled with tandem mass spectrometry. In soils, nine CUPs were found, with chlorpyrifos, carbaryl and tebuconazole having the highest concentrations (up to 63.6, 1.10 and 0.212 ng g(-1), respectively). In air, 16 CUPs were found, with carbaryl, tebuconazole and terbuthylazine having the highest levels (up to 25.0, 22.2 and 1.94 pg m(-3), respectively). Spatial differences were observed between the two sites for seven CUPs in air and two in soils. A large dominance towards the particulate phase was found for almost all CUPs, which could be related to mass transport kinetics limitations (non-equilibrium) following pesticide application. The estimated daily intake via soil ingestion and inhalation of individual pesticides ranged from 0.126 fg kg(-1) day(-1) (isoproturon) to 14.7 ng kg(-1) day(-1) (chlorpyrifos). Except for chlorpyrifos, soil ingestion generally represented a minor exposure pathway compared to inhalation (i.e. <5%). The pesticide environmental exposure largely differed between the residents of the two distinct agricultural sites in terms of levels and composition. The estimated human health risks due to soil ingestion and inhalation of pesticides were negligible although future studies should explore other relevant pathways

    Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayered Metal Catalysts

    Get PDF
    Vertically aligned, high-density ZnO nanowires (NWs) were grown for the first time on c-plane sapphire using binary alloys of Ni/Au or Cu/Au as the catalyst. The growth was performed under argon gas flow and involved the vapor-liquid-solid (VLS) growth process. We have investigated various ratios of catalyst components for the NWs growth and results indicate that very thin adhesion layers of Ni or Cu deposited prior to the Au layer are not deleterious to the ZnO NW array growth. Significant improvement of the Au adhesion on the substrate was noted, opening the potential for direct catalyst patterning of Au and subsequent NW array growth. Additionally, we found that an increase of in thickness of the Cu adhesion layer results in the simultaneous growth of NWs and nanoplates (NPs), indicating that in this case the growth involves both the VLS and vapor-solid (VS) growth mechanisms. Energy dispersive X-ray spectroscopy (EDX) and surface-enhanced Raman scattering (SERS) studies were also performed to characterize the resulting ZnO NW arrays, indicating that the NWs grown using a thin adhesion layer of Ni or Cu under the Au show comparable SERS enhancement to those of the pure Au-catalyzed NWs

    Phase Decomposition and Chemical Inhomogeneity in Nd2-xCexCuO4

    Full text link
    Extensive X-ray and neutron scattering experiments and additional transmission electron microscopy results reveal the partial decomposition of Nd2-xCexCuO4 (NCCO) in a low-oxygen-fugacity environment such as that typically realized during the annealing process required to create a superconducting state. Unlike a typical situation in which a disordered secondary phase results in diffuse powder scattering, a serendipitous match between the in-plane lattice constant of NCCO and the lattice constant of one of the decomposition products, (Nd,Ce)2O3, causes the secondary phase to form an oriented, quasi-two-dimensional epitaxial structure. Consequently, diffraction peaks from the secondary phase appear at rational positions (H,K,0) in the reciprocal space of NCCO. Additionally, because of neodymium paramagnetism, the application of a magnetic field increases the low-temperature intensity observed at these positions via neutron scattering. Such effects may mimic the formation of a structural superlattice or the strengthening of antiferromagnetic order of NCCO, but the intrinsic mechanism may be identified through careful and systematic experimentation. For typical reduction conditions, the (Nd,Ce)2O3 volume fraction is ~1%, and the secondary-phase layers exhibit long-range order parallel to the NCCO CuO2 sheets and are 50-100 angstromsthick. The presence of the secondary phase should also be taken into account in the analysis of other experiments on NCCO, such as transport measurements.Comment: 15 pages, 17 figures, submitted to Phys. Rev.

    Optical Properties of Gallium-Doped Zinc Oxide-A Low-Loss Plasmonic Material: First-Principles Theory and Experiment

    Get PDF
    Searching for better materials for plasmonic and metamaterial applications is an inverse design problem where theoretical studies are necessary. Using basic models of impurity doping in semiconductors, transparent conducting oxides (TCOs) are identified as low-loss plasmonic materials in the near-infrared wavelength range. A more sophisticated theoretical study would help not only to improve the properties of TCOs but also to design further lower-loss materials. In this study, optical functions of one such TCO, gallium-doped zinc oxide (GZO), are studied both experimentally and by first-principles density-functional calculations. Pulsed-laser-deposited GZO films are studied by the x-ray diffraction and generalized spectroscopic ellipsometry. Theoretical studies are performed by the total-energy-minimization method for the equilibrium atomic structure of GZO and random phase approximation with the quasiparticle gap correction. Plasma excitation effects are also included for optical functions. This study identifies mechanisms other than doping, such as alloying effects, that significantly influence the optical properties of GZO films. It also indicates that ultraheavy Ga doping of ZnO results in a new alloy material, rather than just degenerately doped ZnO. This work is the first step to achieve a fundamental understanding of the connection between material, structural, and optical properties of highly doped TCOs to tailor those materials for various plasmonic applications

    Ferromagnetic behavior of ultrathin manganese nanosheets

    Full text link
    Ferromagnetic behaviour has been observed experimentally for the first time in nanostructured Manganese. Ultrathin (\sim 0.6 nm) Manganese nanosheets have been synthesized inside the two dimensional channels of sol-gel derived Na-4 mica. The magnetic properties of the confined system are measured within 2K-300K temperature range. The confined structure is found to show a ferromagnetic behaviour with a nonzero coercivity value. The coercivity value remains positive throughout the entire temperature range of measurement. The experimental variation of susceptibility as a function of temperature has been satisfactorily explained on the basis of a two dimensional system with a Heisenberg Hamiltonian involving direct exchange interaction.Comment: 13 pages, 9 figure

    Anisotropic physical properties of single crystal U2Rh2Sn in high magnetic fields

    Get PDF
    We report on the crystal and magnetic structures,magnetic, transport, and thermal properties of U2Rh2Sn single crystals studied in part in high magnetic fields up to 58 T. The material adopts a U3Si2 related tetragonal crystal structure and orders antiferromagnetically below TN 25 K. The antiferromagnetic structure is characterized by a propagation vector k 0,0,1 2 . The magnetism in U2Rh2Sn is found to be associated mainly with 5f states. However, both unpolarized and polarized neutron experiments reveal at low temperatures in zero field non negligible magnetic moments also on Rh sites. U moments of 0.50 2 amp; 956;B are directed along the tetragonal axis while Rh moments of 0.06 4 amp; 956;B form a noncollinear arrangement confined to the basal plane. The response to applied magnetic field is highly anisotropic. Above amp; 8764;15 K the easy magnetization direction is along the tetragonal axis. At lower temperatures, however, a stronger response is found perpendicular to the c axis. While for the a axis no magnetic phase transition is observed up to 58 T, for the field applied at 1.8 K along the tetragonal axis we observe above 22.5 T a field polarized state. A magnetic phase diagram for the field applied along the c axis is presented

    Novel Coexistence of Superconductivity with Two Distinct Magnetic Orders

    Full text link
    The heavy fermion Ce(Rh,Ir)In5 system exhibits properties that range from an incommensurate antiferromagnet on the Rh-rich end to an exotic superconductor on the Ir-rich end of the phase diagram. At intermediate composition where antiferromagnetism coexists with superconductivity, two types of magnetic order are observed: the incommensurate one of CeRhIn5 and a new, commensurate antiferromagnetism that orders separately. The coexistence of f-electron superconductivity with two distinct f-electron magnetic orders is unique among unconventional superconductors, adding a new variety to the usual coexistence found in magnetic superconductors.Comment: 3 figures, 4 page
    corecore