1,137 research outputs found

    A mitochondrial view of cell fate

    Get PDF

    Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling

    Get PDF
    Modulation of energy metabolism is emerging as a key aspect associated with cell fate transition. The establishment of a correct metabolic program is particularly relevant for neural cells given their high bioenergetic requirements. Accordingly, diseases of the nervous system commonly involve mitochondrial impairment. Recent studies in animals and in neural derivatives of human pluripotent stem cells (PSCs) highlighted the importance of mitochondrial metabolism for neural fate decisions in health and disease. The mitochondria-based metabolic program of early neurogenesis suggests that PSC-derived neural stem cells (NSCs) may be used for modeling neurological disorders. Understanding how metabolic programming is orchestrated during neural commitment may provide important information for the development of therapies against conditions affecting neural functions, including aging and mitochondrial disorders

    A glycolytic solution for pluripotent stem cells

    Get PDF
    Glycolysis is an essential component of cellular metabolism associated with pluripotent stem cells (PSCs). Two new papers, one by Gu et al. (2016) in this issue of Cell Stem Cell and one by Zhang et al. (2016) in Cell Reports, demonstrate that glycolytic flux is dynamically increased in human primed PSCs upon feeder-free cultivation or conversion into the naive state

    A mitochondrial strategy for safeguarding the reprogrammed genome

    Get PDF
    Genomic aberrations induced by somatic cell reprogramming are a major drawback for future applications of this technology in regenerative medicine. A new study by Ji et al. published in Stem Cell Reports suggests a counteracting strategy based on balancing the mitochondrial/oxidative stress pathway through antioxidant supplementation

    Pluripotent stem cells for uncovering the role of mitochondria in human brain function and dysfunction

    Get PDF
    Mitochondrial dysfunctions are a known pathogenetic mechanism of a number of neurological and psychiatric disorders. At the same time, mutations in genes encoding for components of the mitochondrial respiratory chain cause mitochondrial diseases, which commonly exhibit neurological symptoms. Mitochondria are therefore critical for the functionality of the human nervous system. The importance of mitochondria stems from their key roles in cellular metabolism, calcium handling, redox and protein homeostasis, and overall cellular homeostasis through their dynamic network. Here, we describe how the use of pluripotent stem cells (PSCs) may help addressing the physiological and pathological relevance of mitochondria for the human nervous system. PSCs allow the generation of patient-derived neurons and glia and the identification of gene-specific and mutation-specific cellular phenotypes via genome engineering approaches. We discuss the recent advances in PSC-based modeling of brain diseases and the current challenges of the field. We anticipate that the careful use of PSCs will improve our understanding of the impact of mitochondria in neurological and psychiatric disorders and the search for effective therapeutic avenues

    Energy metabolism in neuronal/glial induction and iPSC-based modeling of brain disorders

    Get PDF
    The metabolic switch associated with the reprogramming of somatic cells to pluripotency has received increasing attention in recent years. However, the impact of mitochondrial and metabolic modulation on stem cell differentiation into neuronal/glial cells and related brain disease modeling still remains to be fully addressed. Here, we seek to focus on this aspect by first addressing brain energy metabolism and its inter-cellular metabolic compartmentalization. We then review the findings related to the mitochondrial and metabolic reconfiguration occurring upon neuronal/glial specification from pluripotent stem cells (PSCs). Finally, we provide an update of the PSC-based models of mitochondria-related brain disorders and discuss the challenges and opportunities that may exist on the road to develop a new era of brain disease modeling and therapy
    • …
    corecore