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A mitochondrial strategy for safeguarding the
reprogrammed genome
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Abstract

Genomic aberrations induced by somatic cell reprogramming are a major drawback for future applications of this
technology in regenerative medicine. A new study by Ji et al. published in Stem Cell Reports suggests a
counteracting strategy based on balancing the mitochondrial/oxidative stress pathway through antioxidant
supplementation.
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Commentary
Reactive oxygen species (ROS) are common by-products
of cellular respiration. They can act as second messengers
exerting physiological roles [1]. However, if ROS levels
increase beyond a certain threshold, functional oxidative
damage to macromolecules can occur, leading to protein,
lipid or genomic aberrations and eventually cell death
[2]. To preserve genome integrity, cells have developed
a fine-tuned machinery to counteract ROS by keeping
them in equilibrium with reducing equivalents [1,2]. The
maintenance of redox balance is thus critical for cells both
in steady states and during adaptations to different condi-
tions. Now, a new study by Ji et al. [3] demonstrates that
supporting redox homeostasis is important also during
the induction of pluripotency.
The authors detected increased levels of ROS and

oxidative DNA damage during the early stages of human
retroviral-based reprogramming using four factors (4F:
OCT4, SOX2, KLF4, c-MYC), in agreement with previous
reports [4,5]. Notably, the concurrent supply of antioxi-
dants (vitamin C or N-acetyl-cysteine, NAC) appeared
capable of reducing both ROS and genomic double-strand
breaks, resulting in lower apoptotic rates. These effects
were not a consequence of altered transgene activity, since
antioxidants did not modify the 4F expression or their
silencing. Remarkably, induced pluripotent stem cells
(iPSCs) lines generated with antioxidant supplementation
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displayed significantly fewer de novo copy number varia-
tions (CNVs), i.e. genomic variants that were not already
present in the parental fibroblast population. To rule out
that the reduction in the number of CNVs was not due
to additional non-antioxidant related mechanisms influ-
encing reprogramming, which have been found associated
with vitamin C supplementation [6,7], the authors dem-
onstrated that CNVs were similarly lowered by vitamin
C and NAC treatment. It must also be noted that culture
media typically employed for human reprogramming (e.g.
KSR and mTeSR) contains vitamin C, suggesting that in
its absence the levels of ROS would be higher. Hence,
supporting the redox balance through the addition of
reducing molecules may protect the somatic genome,
leading to iPSCs with fewer genomic alterations.
Reprogramming somatic cells to pluripotency involves

a profound cellular reconfiguration associated with high
proliferative rates and a shift towards glycolysis-based
metabolism even in the presence of oxygen [8,9], a situ-
ation reminiscent of the Warburg effect that occurs upon
cancer transformation. Maintaining the redox equilibrium
would therefore be essential for cells undergoing such
dramatic restructuring. Indeed, tumor cells re-route the
energy flux outside the mitochondria and into the pentose
phosphate pathway (PPP) in order to provide important
reducing equivalents and diminish the generation of mito-
chondrial ROS. In this regard, recent evidence suggests
that a central player in cancer is pyruvate kinase isoform
M2 (PKM2), increased levels of which lead to higher con-
centrations of glucose-6-phosphate (G6P) and enhanced
PPP activity [10]. Interestingly, PKM2 and G6P are also
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Figure 1 The induction of pluripotency involves the
establishment of a cellular state characterized by low levels of
oxidative stress. This is accomplished through a global metabolic
restructuring which leads to reduced mitochondrial oxidative
phosphorylation (OXPHOS) and increased energy flux towards
glycolysis and the pentose phosphate pathway (PPP) (orange
arrows). However, this glycolytic shift is not adequately sufficient
to prevent the increased leakage of reactive oxygen species (ROS)
associated with viral-based four factor (4F) reprogramming. This
results in DNA damage that may have detrimental consequences on
iPSC functionality (red arrows). The paper by Ji et al. demonstrates that
the supplementation with ROS-scavenging molecules provides
additional defense against redox imbalance, giving rise to iPSCs
bearing fewer genomic aberrations (blue arrows).
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up-regulated upon the induction of pluripotency [11,12],
indicating that similar mechanisms aiming at maintaining
redox homeostasis are also in place during reprogram-
ming. Supporting this idea, increased ROS levels promote
the differentiation of stem cells [13] and low ROS levels
are a characteristic of undifferentiated pluripotent stem
cells [8,14]. However, in agreement with previous obser-
vations [4,5], the work of Ji et al. [3] demonstrates that
the redox equilibrium is not sufficiently balanced during
reprogramming (Figure 1).
Their findings also raise a series of important questions.

For example, how is it that somatic-coding mutations are
not affected by the introduction of antioxidants? The
authors suggest that oxidative DNA lesions might be
less error-prone and therefore more easily corrected.
Moreover, is it possible to employ additional conditions
that potentiate the effects of the antioxidant cocktail? In
this regard, hypoxia or the addition of a hypoxia mimetic
might be beneficial, given that hypoxia enhances iPSC der-
ivation [15], by inducing a faster glycolytic transition [12].
Likewise, do antioxidants protect against mitochondrial
mutations acquired during reprogramming [11]?
Another central issue that remains to be addressed is

the relationship between antioxidant supplementation,
reprogramming methods and genomic aberrations. Al-
though mutations have been found to occur also using
non-integrating strategies [16], the levels of nuclear and
mtDNA alterations may be diminished under these condi-
tions [17]. Indeed, non-integrating episomal plasmids elicit
a lower ROS response than viral-based reprogramming [5].
A systematic comparison using various iPSC techniques
with and without antioxidant treatment would help to
clarify this matter.
Finally, the data by Ji et al. [3] underscores the unique

features of c-MYC within the 4F cocktail. c-MYC is a key
inducer of glycolytic reconfiguration [18] but also appears
as the major contributor of reprogramming-mediated oxi-
dative stress. In fact, the use of the other three factors did
not generate a drastic elevation of ROS nor was their basal
level affected by antioxidant supplementation [3]. Nonethe-
less, genomic aberrations and metabolic conversion can
occur also in the absence of c-MYC [19,20]. Hence, repro-
gramming strategies should ideally avoid the inclusion of
c-MYC, and it remains unclear whether such strategies
would also benefit from the addition of antioxidants.
Overall, the work by Ji et al. [3] has relevant implications,

as the occurrence of reprogramming-mediated genomic
alterations is currently a major obstacle hindering the use
of iPSCs in medical applications [21]. Further manipula-
tion of the mitochondrial/oxidative stress pathway may
thus pave the way for the development of safer repro-
gramming approaches.
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