3 research outputs found

    Biochemical‑, Biophysical‑, and Microarray-Based Antifungal Evaluation of the Buffer-Mediated Synthesized Nano Zinc Oxide: An in Vivo and in Vitro Toxicity Study

    No full text
    Here we describe a simple, novel method of zinc oxide nanoparticle (ZNP) synthesis and physicochemical characterization. The dose-dependent antifungal effect of ZNPs, compared to that of micronized zinc oxide (MZnO), was studied on two pathogenic fungi: <i>Aspergillus niger</i> and <i>Fusarium oxysporum</i>. Superoxide dismutase (SOD) activity, ascorbate peroxidase activity, catalase activity, glutathione reductase (GR) activity, thiol content, lipid peroxidation, and proline content in ZNP-treated fungal samples were found to be elevated in comparison to the control, which strongly suggested that the antifungal effect of ZNPs was due to the generation of reactive oxygen species (ROS). Protein carbonylation, another marker of oxidative stress, was also evaluated by the dinitrophenyl hydrazine (DNPH) binding assay and Fourier transform infrared (FTIR) spectral analysis followed by Western blot and microarray analysis of fungal samples to confirm ROS generation by ZNPs. Micrographic studies for the morphological analysis of fungal samples (ZNP-treated and a control) exhibited an alteration in fungal morphology. The bioavailability of ZNPs on fungal cell was confirmed by energy-dispersive X-ray (EDX) analysis followed by high-resolution transmission electron microscopy (HR-TEM) and confocal microscopic analysis of the fungal samples. In vivo acute oral toxicity, acetylcholine esterase activity, and a fertility study using a mice model were also investigated for ZNPs. The long-term toxicity of ZNPs through intravenous injection was evaluated and compared to that of MZnO. The in vitro comparative toxicity of ZNPs and MZnO was evaluated on MRC-5 cells with the help of water-soluble tetrazolium (WST-1) and lactate dehydrogenase (LDH) assays. These results suggested that ZNPs could be used as an effective fungicide in modern medical and agricultural sciences

    Copper Nanoparticle (CuNP) Nanochain Arrays with a Reduced Toxicity Response: A Biophysical and Biochemical Outlook on Vigna radiata

    No full text
    Copper deficiency or toxicity in agricultural soil circumscribes a plant’s growth and physiology, hampering photochemical and biochemical networks within the system. So far, copper sulfate (CS) has been used widely despite its toxic effect. To get around this long-standing problem, copper nanoparticles (CuNPs) have been synthesized, characterized, and tested on mung bean plants along with commercially available salt CS, to observe morphological abnormalities enforced if any. CuNPs enhanced photosynthetic activity by modulating fluorescence emission, photophosphorylation, electron transport chain (ETC), and carbon assimilatory pathway under controlled laboratory conditions, as revealed from biochemical and biophysical studies on treated isolated mung bean chloroplast. CuNPs at the recommended dose worked better than CS in plants in terms of basic morphology, pigment contents, and antioxidative activities. CuNPs showed elevated nitrogen assimilation compared to CS. At higher doses CS was found to be toxic to the plant system, whereas CuNP did not impart any toxicity to the system including morphological and/or physiological alterations. This newly synthesized polymer-encapsulated CuNPs can be utilized as nutritional amendment to balance the nutritional disparity enforced by copper imbalance

    Manganese Nanoparticles: Impact on Non-nodulated Plant as a Potent Enhancer in Nitrogen Metabolism and Toxicity Study both in Vivo and in Vitro

    No full text
    Mung bean plants were grown under controlled conditions and supplemented with macro- and micronutrients. The objective of this study was to determine the response of manganese nanoparticles (MnNP) in nitrate uptake, assimilation, and metabolism compared with the commercially used manganese salt, manganese sulfate (MS). MnNP was modulated to affect the assimilatory process by enhancing the net flux of nitrogen assimilation through NR-NiR and GS-GOGAT pathways. This study was associated with toxicological investigation on in vitro and in vivo systems to promote MnNP as nanofertilizer and can be used as an alternative to MS. MnNP did not impart any toxicity to the mice brain mitochondria except in the partial inhibition of complex II–III activity in ETC. Therefore, mitochondrial dysfunction and neurotoxicity, which were noted by excess usage of elemental manganese, were prevented. This is the first attempt to highlight the nitrogen uptake, assimilation, and metabolism in a plant system using a nanoparticle to promote a biosafe nanomicronutrient-based crop management
    corecore