1 research outputs found

    Role of Surface Polarity in Self-Catalyzed Nucleation and Evolution of GaN Nanostructures

    No full text
    Self-catalytic growth of GaN nanotips and nanoparticles, grown by chemical vapor deposition technique, are investigated. Three important parameters, comprised of incubation time, anisotropy of diffusion, and rate-limiting factors of Ga and N adatoms migration over polar and nonpolar surfaces, are found to play significant roles in determining the final morphology of these nanostructures. Nucleation of GaN nanotips takes place under Ga-rich conditions. As the reaction proceeds, the stochiometry changes occur as a result of a shift in Ga-rich to N-rich conditions on the surface. In all of these cases, the growth continues to be in vapor–solid mode. The conical shape of the nanotips is explained in terms of differential growth in the reduced surface diffusion of Ga under N-rich conditions on polar surfaces (0001) relative to nonpolar surfaces (101̅0). Nanoparticles are grown initially in N-rich conditions with significantly shorter incubation times. A mechanistic approach that expounds evolution of nanotips and nanoparticles is elucidated in details using crystallographic and electronic structural studies
    corecore