14 research outputs found

    Perspectiva de género en la asignatura de farmacología

    Get PDF
    En este proyecto de innovación docente hemos trabajo para comenzar a poner las bases de posibles diferencias que pueden existir en la farmacología de los medicamentos, atendiendo a si la persona que los toma es un hombre o una mujer. Con alumnos del grado de Nutrición Humana y Dietética y de Odontología hemos buscado bibliografía que nos demuestre si efectivamente se dan estas diferencias en la farmacocinética, en la farmacodinamia y en los efectos adversos. Los resultados encontrados nos han permitido presentar 2 comunicaciones en congresos y realizar un TFGDepto. de Farmacología y ToxicologíaFac. de MedicinaFALSEsubmitte

    Toll‐like receptor 4 modulates cell migration and cortical neurogenesis after focal cerebral ischemia

    No full text
    Toll-like receptor 4 (TLR4) mediates brain damage after stroke. Now our objective is to determine TLR4 involvement in stroke-induced neurogenesis. Stroke was induced by permanent middle cerebral artery occlusion in wild-type and TLR4-deficient mice. Stereological and densitometric analysis of immunofluorescence-labeled brain sections and FACS analysis of cell suspensions were performed. Our results show that subventricular zone (SVZ) cell proliferation after stroke depends on infarct size. Second, when comparing brains with similar lesions, TLR4 attenuated SVZ proliferation, as shown by a decrease in prominin-1(+)/EGFR(+)/nestin(-) cells (type-C cells) at 1-2 d, and in BrdU(+) cells at 7 d, in TLR4(+/+) vs. TLR4(-/-) mice. Interestingly, 7 d after the infarct, neuroblasts in TLR4(+/+) mice migrated farther distances, reaching areas closer to the lesion than those in TLR4-deficient mice. However, at 14 d, TLR4-deficient mice presented a higher number of neuroblasts in all migratory zones than the TLR4(+/+) counterparts, which suggests that TLR4 deficiency delays neuroblast migration. Consistently, TLR4(+/+) mice showed an increased number of interneurons (NeuN(+)/BrdU(+)/GAD67(+) cells) in peri-infarct cortex 14-28 d after stroke. Our data indicate that, despite a negative effect on SVZ cell proliferation, TLR4 plays an important role in stroke-induced neurogenesis by promoting neuroblasts migration and increasing the number of new cortical neurons after stroke.Depto. de Farmacología y ToxicologíaFac. de MedicinaTRUEpu

    Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia

    No full text
    Background: Aging is not just a risk factor of stroke, but it has also been associated with poor recovery. It is known that stroke-induced neurogenesis is reduced but maintained in the aged brain. However, there is no consensus on how neurogenesis is affected after stroke in aged animals. Our objective is to determine the role of aging on the process of neurogenesis after stroke. Methods: We have studied neurogenesis by analyzing proliferation, migration, and formation of new neurons, as well as inflammatory parameters, in a model of cerebral ischemia induced by permanent occlusion of the middle cerebral artery in young- (2 to 3 months) and middle-aged mice (13 to 14 months). Results: Aging increased both microglial proliferation, as shown by a higher number of BrdU(+) cells and BrdU/Iba1(+) cells in the ischemic boundary and neutrophil infiltration. Interestingly, aging increased the number of M1 monocytes and N1 neutrophils, consistent with pro-inflammatory phenotypes when compared with the alternative M2 and N2 phenotypes. Aging also inhibited (subventricular zone) SVZ cell proliferation by decreasing both the number of astrocyte-like type-B (prominin-1(+)/epidermal growth factor receptor (EGFR)(+)/nestin(+)/glial fibrillary acidic protein (GFAP)(+) cells) and type-C cells (prominin-1(+)/EGFR(+)/nestin(-)/Mash1(+) cells), and not affecting apoptosis, 1 day after stroke. Aging also inhibited migration of neuroblasts (DCX(+) cells), as indicated by an accumulation of neuroblasts at migratory zones 14 days after injury; consistently, aged mice presented a smaller number of differentiated interneurons (NeuN(+)/BrdU(+) and GAD67(+) cells) in the peri-infarct cortical area 14 days after stroke. Conclusions: Our data confirm that stroke-induced neurogenesis is maintained but reduced in aged animals. Importantly, we now demonstrate that aging not only inhibits proliferation of specific SVZ cell subtypes but also blocks migration of neuroblasts to the damaged area and decreases the number of new interneurons in the cortical peri-infarct area. Thus, our results highlight the importance of using aged animals for translation to clinical studies.Unión EuropeaMinisterio de Ciencia e InnovaciónComunidad de MadridDepto. de Farmacología y ToxicologíaFac. de MedicinaTRUEpu

    TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal Models

    No full text
    Since Toll-like receptor 4 (TLR4) mediates brain damage after stroke, development of TLR4 antagonists is a promising therapeutic strategy for this disease. Our aim was to generate TLR4-blocking DNA aptamers to be used for stroke treatment. From a random oligonucleotide pool, we identified two aptamers (ApTLR#1R, ApTLR#4F) with high affinity for human TLR4 by systematic evolution of ligands by exponential enrichment (SELEX). Optimized truncated forms (ApTLR#1RT, ApTLR#4FT) were obtained. Our data demonstrate specific binding of both aptamers to human TLR4 as well as a TLR4 antagonistic effect. ApTLR#4F and ApTLR#4FT showed a long-lasting protective effect against brain injury induced by middle cerebral artery occlusion (MCAO), an effect that was absent in TLR4-deficient mice. Similar effects were obtained in other MCAO models, including in rat. Additionally, efficacy of ApTLR#4FT in a model of brain ischemia-reperfusion in rat supports the use of this aptamer in patients undergoing artery recanalization induced by pharmacological or mechanical interventions. The absence of major toxicology aspects and the good safety profile of the aptamers further encourage their future clinical positioning for stroke therapy and possibly other diseases in which TLR4 plays a deleterious role.Depto. de Farmacología y ToxicologíaFac. de MedicinaTRUEpu

    The role of gut microbiota in cerebrovascular disease and related dementia

    No full text
    In recent years, increasing evidence suggests that commensal microbiota may play an important role not only in health but also in disease including cerebrovascular disease. Gut microbes impact physiology, at least in part, by metabolizing dietary factors and host-derived substrates and then generating active compounds including toxins. The purpose of this current review is to highlight the complex interplay between microbiota, their metabolites. and essential functions for human health, ranging from regulation of the metabolism and the immune system to modulation of brain development and function. We discuss the role of gut dysbiosis in cerebrovascular disease, specifically in acute and chronic stroke phases, and the possible implication of intestinal microbiota in post-stroke cognitive impairment and dementia, and we identify potential therapeutic opportunities of targeting microbiota in this context.Depto. de Farmacología y ToxicologíaDepto. de Biología CelularFac. de MedicinaInstituto Universitario de Investigación en Neuroquímica (IUIN)TRUEpubAPC financiada por la UC

    Toll-like receptor 4 regulates subventricular zone proliferation and neuroblast migration after experimental stroke

    No full text
    Ischemic stroke is one of the leading causes of death and disability with an urgent need for innovative therapies, especially targeting the chronic phase. New evidence has emerged showing that Toll-Like Receptor 4 (TLR4), a key mediator of brain damage after stroke, may be involved in brain repair by neurogenesis modulation. The aim of this study is to analyze the role of TLR4 in the different stages of neurogenesis initiated in the subventricular zone (SVZ) over time after stroke in mice. Wildtype and TLR4-deficient mice underwent experimental ischemia, and neural stem/progenitor cells (NSPCs) proliferation and migration were analyzed by using FACS analysis, fluorescence densitometry, RT-qPCR and in vitro assays. Our results show that both groups, wildtype and knock-out animals, present a similar pattern of bilateral cell proliferation at the SVZ, with a decrease in NSPCs pro-liferation in the acute phase of stroke. We also show that TLR4 activation, very likely mediated by ligands such as HMGB1 released to CSF after stroke, is necessary to keep an increased proliferation of NSCs as well as to promote differentiation from type C cells into neuroblasts promoting their migration. TLR4 activation was also implicated in earlier expression of SDF-1α and faster recovery of BDNF expression after stroke. These results support TLR4 as an important therapeutic target in the modulation of neurogenesis after stroke.Instituto de Salud Carlos IIIFondo Europeo de Desarrollo Regional (FEDER)Ministerio de Economía (España)Comunidad de MadridDepto. de Farmacología y ToxicologíaFac. de MedicinaTRUEpu

    Silent Information Regulator 1 Protects the Brain Against Cerebral Ischemic Damage

    No full text
    Background and purpose: Sirtuin 1 (SIRT1) is a member of NAD+-dependent protein deacetylases implicated in a wide range of cellular functions and has beneficial properties in pathologies including ischemia/reperfusion processes and neurodegeneration. However, no direct evidence has been reported on the direct implication of SIRT1 in ischemic stroke. The aim of this study was to establish the role of SIRT1 in stroke using an experimental model in mice. Methods: Wild-type and Sirt1-/- mice were subjected to permanent focal ischemia by permanent ligature. In another set of experiments, wild-type mice were treated intraperitoneally with vehicle, activator 3 (SIRT1 activator, 10 mg/kg), or sirtinol (SIRT1 inhibitor, 10 mg/kg) for 10 minutes, 24 hours, and 40 hours after ischemia. Brains were removed 48 hours after ischemia for determining the infarct volume. Neurological outcome was evaluated using the modified neurological severity score. Results: Exposure to middle cerebral artery occlusion increased SIRT1 expression in neurons of the ipsilesional mouse brain cortex. Treatment of mice with activator 3 reduced infarct volume, whereas sirtinol increased ischemic injury. Sirt1-/- mice displayed larger infarct volumes after ischemia than their wild-type counterparts. In addition, SIRT1 inhibition/deletion was concomitant with increased acetylation of p53 and nuclear factor κB (p65). Conclusions: These results support the idea that SIRT1 plays an important role in neuroprotection against brain ischemia by deacetylation and subsequent inhibition of p53-induced and nuclear factor κB-induced inflammatory and apoptotic pathways.Depto. de Farmacología y ToxicologíaFac. de MedicinaTRUEpu

    Iron overload, measured as serum ferritin, increases brain damage induced by focal ischemia and early reperfusion

    No full text
    High levels of iron, measured as serum ferritin, are associated to a worse outcome after stroke. However, it is not known whether ischemic damage might increase ferritin levels as an acute phase protein or whether iron overload affects stroke outcome. The objectives are to study the effect of stroke on serum ferritin and the contribution of iron overload to ischemic damage. Swiss mice were fed with a standard diet or with a diet supplemented with 2.5% carbonyl iron to produce iron overload. Mice were submitted to permanent (by ligature and by in situ thromboembolic models) or transient focal ischemia (by ligature for 1 or 3h). Treatment with iron diet produced an increase in the basal levels of ferritin in all the groups. However, serum ferritin did not change after ischemia. Animals submitted to permanent ischemia had the same infarct volume in the groups studied. However, in mice submitted to transient ischemia followed by early (1h) but not late reperfusion (3h), iron overload increased ischemic damage and haemorrhagic transformation. Iron worsens ischemic damage induced by transient ischemia and early reperfusion. In addition, ferritin is a good indicator of body iron levels but not an acute phase protein after ischemia.Depto. de Farmacología y ToxicologíaFac. de MedicinaTRUEpu
    corecore