114 research outputs found

    Environmental Response and Genomic Regions Correlated with Rice Root Growth and Yield under Drought in the OryzaSNP Panel across Multiple Study Systems

    Get PDF
    The rapid progress in rice genotyping must be matched by advances in phenotyping. A better understanding of genetic variation in rice for drought response, root traits, and practical methods for studying them are needed. In this study, the OryzaSNP set (20 diverse genotypes that have been genotyped for SNP markers) was phenotyped in a range of field and container studies to study the diversity of rice root growth and response to drought. Of the root traits measured across more than 20 root experiments, root dry weight showed the most stable genotypic performance across studies. The environment (E) component had the strongest effect on yield and root traits. We identified genomic regions correlated with root dry weight, percent deep roots, maximum root depth, and grain yield based on a correlation analysis with the phenotypes and aus, indica, or japonica introgression regions using the SNP data. Two genomic regions were identified as hot spots in which root traits and grain yield were co-located; on chromosome 1 (39.7–40.7 Mb) and on chromosome 8 (20.3–21.9 Mb). Across experiments, the soil type/ growth medium showed more correlations with plant growth than the container dimensions. Although the correlations among studies and genetic co-location of root traits from a range of study systems points to their potential utility to represent responses in field studies, the best correlations were observed when the two setups had some similar properties. Due to the co-location of the identified genomic regions (from introgression block analysis) with QTL for a number of previously reported root and drought traits, these regions are good candidates for detailed characterization to contribute to understanding rice improvement for response to drought. This study also highlights the utility of characterizing a small set of 20 genotypes for root growth, drought response, and related genomic regions

    Genomic and Expression Analyses Define MUC17 and PCNX1 as Predictors of Chemotherapy Response in Breast Cancer

    Get PDF

    Not Available

    No full text
    Not AvailableAscitesNot Availabl

    Structural Modification of Sol-gel Materials Through Retro Diels-Alder Reaction

    No full text
    Hydrolysis and condensation of organically bridged bis-triethoxysilanes, (EtO){sub 3}Si-R-Si(OEt){sub 3}, results in the formation of three dimensional organic/inorganic hybrid networks (Equation 1). Properties of these materials, including porosity, are dependent on the nature of the bridging group, R. Flexible groups (akylene-spacers longer than five carbons in length) polymerize under acidic conditions to give non-porous materials. Rigid groups (such as arylene-, alkynylene-, or alkenylene) form non-porous, microporous, and macroporous gels. In many cases the pore size distributions are quite narrow. One of the motivations for preparing hybrid organic-inorganic materials is to extend the range of properties available with sol-gel systems by incorporating organic groups into the inorganic network. For example, organically modified silica gels arc either prepared by co-polymerizing an organoalkoxysilane with a silica precursor or surface silylating the inorganic gel. This can serve to increase hydrophobicity or to introduce some reactive organic functionality. However, the type and orientation of these organic functionalities is difficult to control. Furthermore, many organoalkoxysilanes can act to inhibitor even prevent gelation, limiting the final density of organic functionalities. We have devised a new route for preparing highly functionalized pores in hybrid materials using bridging groups that are thermally converted into the desired functionalities after the gel has been obtained. In this paper, we present the preparation and characterization of bridged polysilsesquioxanes with Diels-Alder adducts as the bridging groups from the sol-gel polymerization of monomers 2 and 4. The bridging groups are constructed such that the retro Diela-Alder reaction releases the dienes and leaves the dienophiles as integral parts of the network polymers. In the rigid architecture of a xerogel, this loss of organic functionality should liberate sufficient space to modify the overall porosity. Furthermore, the new porosity will be functionalized with the dienophilic olefin bridging group. We also demonstrate that by changing the type of Diels-Alder adduct used as the bridging group, we can change the temperature at which the retro-Diels-Alder reaction will occur

    Not Available

    No full text
    Not AvailableStudy was carried out to assess supplemental effects of dietary reduced ubiquinol (rCoQ10) on lipid profile and serum antioxidant activity in broiler chicks fed diets with three energy levels. 270 broiler chicks divided into nine groups (3 energy levels x 3 levels of rCoQ10) with three replicates. Birds were fed with basal energy (BE), low energy (BE-100 (kcal)) and high energy (BE+100 (kcal.kg-1) feed) and rCoQ10 at 0, 20 and 40ppm. Broiler chicks were distributed in completely randomized design and reared for 42d and at end of study, serum and muscle samples were collected for antioxidant activities, lipid contents. The activity of superoxide dismutase, glutathione peroxidase, reduced glutathione, vitamin E were increased and serum malonaldehyde, total, LDL-cholesterol as well as muscle cholesterol were reduced by intake of rCoQ10. The consumption of rCoQ10 improved muscle oxidative stability than the control. Ubiquinol at 20ppm favourably altered lipid profile with reduced lipid peroxidation and improved serum antioxidants activities.Not Availabl

    Free vibration of layered cylindrical shells filled with fluid

    No full text
    The vibration of the layered cylindrical shells filled with a quiescent, incompressible, and inviscid fluid is analyzed. The governing equations of the cylindrical shells are derived by Love’s approximation. The solutions of the displacement functions are assumed in a separable form to obtain a system of coupled differential equations in terms of the displacement functions. The displacement functions are approximated by Bickley-type splines. A generalized eigenvalue problem is obtained and solved numerically for the frequency parameter and an associated eigenvector of the spline coefficients. Two layered shells with three different types of materials under clamped-clamped (C-C) and simply supported (S-S) boundary conditions are considered. The variations of the frequency parameter with respect to the relative layer thickness, the length-to-radius ratio, the length-to-thickness ratio, and the circumferential node number are analyzed

    Structural Modification of Sol-gel Materials Through Retro Diels-Alder Reaction

    No full text
    Hydrolysis and condensation of organically bridged bis-triethoxysilanes, (EtO)âSi-R-Si(OEt)â, results in the formation of three dimensional organic/inorganic hybrid networks (Equation 1). Properties of these materials, including porosity, are dependent on the nature of the bridging group, R. Flexible groups (akylene-spacers longer than five carbons in length) polymerize under acidic conditions to give non-porous materials. Rigid groups (such as arylene-, alkynylene-, or alkenylene) form non-porous, microporous, and macroporous gels. In many cases the pore size distributions are quite narrow. One of the motivations for preparing hybrid organic-inorganic materials is to extend the range of properties available with sol-gel systems by incorporating organic groups into the inorganic network. For example, organically modified silica gels arc either prepared by co-polymerizing an organoalkoxysilane with a silica precursor or surface silylating the inorganic gel. This can serve to increase hydrophobicity or to introduce some reactive organic functionality. However, the type and orientation of these organic functionalities is difficult to control. Furthermore, many organoalkoxysilanes can act to inhibitor even prevent gelation, limiting the final density of organic functionalities. We have devised a new route for preparing highly functionalized pores in hybrid materials using bridging groups that are thermally converted into the desired functionalities after the gel has been obtained. In this paper, we present the preparation and characterization of bridged polysilsesquioxanes with Diels-Alder adducts as the bridging groups from the sol-gel polymerization of monomers 2 and 4. The bridging groups are constructed such that the retro Diela-Alder reaction releases the dienes and leaves the dienophiles as integral parts of the network polymers. In the rigid architecture of a xerogel, this loss of organic functionality should liberate sufficient space to modify the overall porosity. Furthermore, the new porosity will be functionalized with the dienophilic olefin bridging group. We also demonstrate that by changing the type of Diels-Alder adduct used as the bridging group, we can change the temperature at which the retro-Diels-Alder reaction will occur

    Free vibration of layered truncated conical shells filled with quiescent fluid using spline method

    No full text
    Free vibration of layered truncated conical shells filled with quiescent fluid using spline method is studied. Love's first approximation theory is used to formulate the equations of motion of truncated conical shells. Velocity potential and Bernoulli's equations have been applied for the expression of the pressure of the fluid. The fluid is assumed to be incompressible, inviscid and quiescent. The solutions of displacement functions are assumed in a separable form to obtain a system of coupled differential equations in terms of displacement functions. The displacement functions are approximated by Bickley-type splines to obtain the generalized eigenvalue problem by combining with boundary conditions. A generalized eigenvalue problem is obtained and solved numerically for frequency parameter and an associated eigenvector of spline coefficients. Two layered shells are considered. Parametric studies are made to investigate the effect of fluid on the frequencies with respect to the relative layer thickness, semi cone angle and length ratio
    corecore