42,335 research outputs found
Predicting Emerald Ash Borer, \u3ci\u3eAgrilus Planipennis\u3c/i\u3e (Coleoptera: Buprestidae), Landing Behavior on Unwounded Ash
Detection of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), an invasive forest pest, is difficult in low density populations war- ranting continual development of various trapping techniques and protocols. Understanding and predicting landing behavior of A. planipennis may assist in the further development of trapping techniques and improvement of trapping protocols for widespread survey programs in North America. Three multiple regression models were developed using ash tree vigor and crown light exposure to predict the landing behavior of A. planipennis. These models were then used to predict the landing density of A. planipennis at separate sites and in separate years. Successful prediction of A. planipennis capture density at the test sites was limited. Even though the multiple regression models were not effective at predicting landing behavior of A. planipennis, tree characteristics were used to predict the likelihood of A. planipennis landing. Trees predicted as having high likelihood of landing had 3.5 times as many A. planipennis adults/m2 on stem traps than trees predicted as having low likelihood of landing. While the landing density of A. planipennis may not be efficiently predicted, the utility of these predictions may be in the form of identifying trees with a high likelihood of A. planipennis landing. Those high likelihood trees may assist in improving existing detection programs and techniques in North American forests
Sheffield University CLEF 2000 submission - bilingual track: German to English
We investigated dictionary based cross language information
retrieval using lexical triangulation. Lexical triangulation combines the results
of different transitive translations. Transitive translation uses a pivot language
to translate between two languages when no direct translation resource is
available. We took German queries and translated then via Spanish, or Dutch
into English. We compared the results of retrieval experiments using these
queries, with other versions created by combining the transitive translations or
created by direct translation. Direct dictionary translation of a query introduces
considerable ambiguity that damages retrieval, an average precision 79% below
monolingual in this research. Transitive translation introduces more ambiguity,
giving results worse than 88% below direct translation. We have shown that
lexical triangulation between two transitive translations can eliminate much of
the additional ambiguity introduced by transitive translation
Improved He I Emissivities in the Case B Approximation
We update our prior work on the case B collisional-recombination spectrum of
He I to incorporate \textit{ab initio} photoionisation cross-sections. This
large set of accurate, self-consistent cross-sections represents a significant
improvement in He I emissivity calculations because it largely obviates the
piecemeal nature that has marked all modern works. A second, more recent set of
\textit{ab initio} cross-sections is also available, but we show that those are
less consistent with bound-bound transition probabilities than our adopted set.
We compare our new effective recombination coefficients with our prior work and
our new emissivities with those by other researchers, and we conclude with
brief remarks on the effects of the present work on the He I error budget. Our
calculations cover temperatures K and densities cm. Full results are available online.Comment: Accepted to MNRAS Letters; 4 pages, 4 figures, 2 tables, 1
supplemental fil
The use of genetic algorithms to maximize the performance of a partially lined screened room
This paper shows that it is possible to use genetic algorithms to optimize the layout of ferrite tile absorber in a partially lined screened enclosure to produce a "best" performance. The enclosure and absorber are modeled using TLM modeling techniques and the performance is determined by comparison with theoretical normalized site attenuation of free space. The results show that it is possible to cover just 80% of the surface of the enclosure with ferrite absorber and obtain a response which is within +/-4 dB of the free space response between 40 and 200 MHz
Lighting as a Circadian Rhythm-Entraining and Alertness-Enhancing Stimulus in the Submarine Environment
The human brain can only accommodate a circadian rhythm that closely follows 24 hours. Thus, for a work schedule to meet the brain’s hard-wired requirement, it must employ a 24 hour-based program. However, the 6 hours on, 12 hours off (6/12) submarine watchstanding schedule creates an 18-hour “day” that Submariners must follow. Clearly, the 6/12 schedule categorically fails to meet the brain’s operational design, and no schedule other than one tuned to the brain’s 24 hour rhythm can optimize performance. Providing Submariners with a 24 hour-based watchstanding schedule—combined with effective circadian entrainment techniques using carefully-timed exposure to light—would allow crewmembers to work at the peak of their daily performance cycle and acquire more restorative sleep. In the submarine environment, where access to natural light is absent, electric lighting can play an important role in actively entraining—and closely maintaining—circadian regulation. Another area that is likely to have particular importance in the submarine environment is the potential effect of light to help restore or maintain alertness
Broken symmetries and pattern formation in two-frequency forced Faraday waves
We exploit the presence of approximate (broken) symmetries to obtain general
scaling laws governing the process of pattern formation in weakly damped
Faraday waves. Specifically, we consider a two-frequency forcing function and
trace the effects of time translation, time reversal and Hamiltonian structure
for three illustrative examples: hexagons, two-mode superlattices, and two-mode
rhomboids. By means of explicit parameter symmetries, we show how the size of
various three-wave resonant interactions depends on the frequency ratio m:n and
on the relative temporal phase of the two driving terms. These symmetry-based
predictions are verified for numerically calculated coefficients, and help
explain the results of recent experiments.Comment: 4 pages, 6 figure
Community Structure in the United States House of Representatives
We investigate the networks of committee and subcommittee assignments in the
United States House of Representatives from the 101st--108th Congresses, with
the committees connected by ``interlocks'' or common membership. We examine the
community structure in these networks using several methods, revealing strong
links between certain committees as well as an intrinsic hierarchical structure
in the House as a whole. We identify structural changes, including additional
hierarchical levels and higher modularity, resulting from the 1994 election, in
which the Republican party earned majority status in the House for the first
time in more than forty years. We also combine our network approach with
analysis of roll call votes using singular value decomposition to uncover
correlations between the political and organizational structure of House
committees.Comment: 44 pages, 13 figures (some with multiple parts and most in color), 9
tables, to appear in Physica A; new figures and revised discussion (including
extra introductory material) for this versio
- …