273 research outputs found

    Cyclodextrin-PEI-Tat Polymer as a Vector for Plasmid DNA Delivery to Placenta Mesenchymal Stem Cells

    Get PDF
    This study aims to modify a cyclodextrin-PEI-based polymer, PEI-Ξ²-CyD, with the TAT peptide for plasmid DNA delivery to placenta mesenchymal stem cells (PMSCs). By using the disulfide exchange between the SPDP-activated PEI-Ξ²-CyD and TAT peptide, the TAT-PEI-Ξ²-CyD polymer was fabricated and the success of this was confirmed by the presence of characteristic peaks for PEI (at Ξ΄ 2.8-3.2 ppm), CyD (at Ξ΄ 5.2, 3.8-4.0 and 3.4-3. 6 ppm) and TAT (at Ξ΄ 1.6-1.9 and 6.8-7.2 ppm) in the 1H NMR spectrum of TAT-PEI-Ξ²-CyD. The polymer-plasmid-DNA polyplex could condense DNA at an N/P ratio of 7.0-8.0, and form nanoparticles with the size of 150.6Β±5.6 nm at its optimal N/P ratio (20/1). By examining the transfection efficiency and cytotoxicity of TAT-PEI-Ξ²-CyD, conjugation of the TAT peptide onto PEI-Ξ²-CyD was demonstrated to improve the transfection efficiency of PEI-Ξ²-CyD in PMSCs after 48 and 96 hours of post-transfection incubation. The viability of PEI-Ξ²-CyD-treated PMSCs was shown to be over 80% after 5 h of treatment and 24 h of post-treatment incubation. In summary, this study showed that the TAT-PEI-Ξ²-CyD polymer as a vector for plasmid DNA delivery to PMSCs and other cells warrants further investigations. Β© 2011 The Author(s).published_or_final_versionSpringer Open Choice, 21 Feb 201

    Views of dentists on SARS in Beijing and Hong Kong

    Get PDF
    published_or_final_versio

    MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix

    Get PDF
    Bone development is dynamically regulated by homeostasis, in which a balance between adipocytes and osteoblasts is maintained. Disruption of this differentiation balance leads to various bone-related metabolic diseases, including osteoporosis. In the present study, a primate-specific microRNA (miR-637) was found to be involved in the differentiation of human mesenchymal stem cells (hMSCs). Our preliminary data indicated that miR-637 suppressed the growth of hMSCs and induced S-phase arrest. Expression of miR-637 was increased during adipocyte differentiation (AD), whereas it was decreased during osteoblast differentiation (OS), which suggests miR-637 could act as a mediator of adipoosteogenic differentiation. Osterix (Osx), a significant transcription factor of osteoblasts, was shown to be a direct target of miR-637, which significantly enhanced AD and suppressed OS in hMSCs through direct suppression of Osx expression. Furthermore, miR-637 also significantly enhanced de novo adipogenesis in nude mice. In conclusion, our data indicated that the expression of miR-637 was indispensable for maintaining the balance of adipocytes and osteoblasts. Disruption of miR-637 expression patterns leads to irreversible damage to the balance of differentiation in bone marrow. Β© 2011 Zhang et al.published_or_final_versio

    Interactive Multi-Stage Robotic Positioner for Intra-Operative MRI-Guided Stereotactic Neurosurgery

    Get PDF
    Magnetic resonance imaging (MRI) demonstrates clear advantages over other imaging modalities in neurosurgery with its ability to delineate critical neurovascular structures and cancerous tissue in high-resolution 3D anatomical roadmaps. However, its application has been limited to interventions performed based on static pre/post-operative imaging, where errors accrue from stereotactic frame setup, image registration, and brain shift. To leverage the powerful intra-operative functions of MRI, e.g., instrument tracking, monitoring of physiological changes and tissue temperature in MRI-guided bilateral stereotactic neurosurgery, a multi-stage robotic positioner is proposed. The system positions cannula/needle instruments using a lightweight (203Β g) and compact (Ø97Β Γ—Β 81Β mm) skull-mounted structure that fits within most standard imaging head coils. With optimized design in soft robotics, the system operates in two stages: i) manual coarse adjustment performed interactively by the surgeon (workspace of Β±30Β°), ii) automatic fine adjustment with precise (<0.2Β° orientation error), responsive (1.4Β Hz bandwidth), and high-resolution (0.058Β°) soft robotic positioning. Orientation locking provides sufficient transmission stiffness (4.07Β N/mm) for instrument advancement. The system's clinical workflow and accuracy is validated with lab-based (<0.8Β mm) and MRI-based testing on skull phantoms (<1.7Β mm) and a cadaver subject (<2.2Β mm). Custom-made wireless omni-directional tracking markers facilitated robot registration under MRI

    Territory-wide ventriculoperitoneal shunting outcomes from 2009 to 2011: Multicenter Hospital Authority Clinical Audit

    Get PDF
    Free paper 7Meeting Theme: Degenerative Lumbar SpineVentriculoperitoneal (VP) shunting for the management of hydrocephalus is one of the most common procedures performed in daily neurosurgical practice. Although surgical techniques and perioperative management have reduced the incidence of shunt failure, the procedure is still fraught with potential complications. Approaching a third of adult patients (29%) experience shunt failure within the first year and as high as 59% of patients regardless of age require shunt revision during their lifetime1. The aim of this study is to determine the rate of shunt failure in Hong Kong’s public health system and identify its causes as well as risk factors …published_or_final_versio

    Copy number variation analysis based on AluScan sequences

    Get PDF
    BACKGROUND: AluScan combines inter-Alu PCR using multiple Alu-based primers with opposite orientations and next-generation sequencing to capture a huge number of Alu-proximal genomic sequences for investigation. Its requirement of only sub-microgram quantities of DNA facilitates the examination of large numbers of samples. However, the special features of AluScan data rendered difficult the calling of copy number variation (CNV) directly using the calling algorithms designed for whole genome sequencing (WGS) or exome sequencing. RESULTS: In this study, an AluScanCNV package has been assembled for efficient CNV calling from AluScan sequencing data employing a Geary-Hinkley transformation (GHT) of read-depth ratios between either paired test-control samples, or between test samples and a reference template constructed from reference samples, to call the localized CNVs, followed by use of a GISTIC-like algorithm to identify recurrent CNVs and circular binary segmentation (CBS) to reveal large extended CNVs. To evaluate the utility of CNVs called from AluScan data, the AluScans from 23 non-cancer and 38 cancer genomes were analyzed in this study. The glioma samples analyzed yielded the familiar extended copy-number losses on chromosomes 1p and 9. Also, the recurrent somatic CNVs identified from liver cancer samples were similar to those reported for liver cancer WGS with respect to a striking enrichment of copy-number gains in chromosomes 1q and 8q. When localized or recurrent CNV-features capable of distinguishing between liver and non-liver cancer samples were selected by correlation-based machine learning, a highly accurate separation of the liver and non-liver cancer classes was attained. CONCLUSIONS: The results obtained from non-cancer and cancerous tissues indicated that the AluScanCNV package can be employed to call localized, recurrent and extended CNVs from AluScan sequences. Moreover, both the localized and recurrent CNVs identified by this method could be subjected to machine-learning selection to yield distinguishing CNV-features that were capable of separating between liver cancers and other types of cancers. Since the method is applicable to any human DNA sample with or without the availability of a paired control, it can also be employed to analyze the constitutional CNVs of individuals.published_or_final_versio

    Source of surface ozone and reactive nitrogen speciation at Mount Waliguan in western China : new insights from the 2006 summer study

    Get PDF
    Author name used in this publication: Xue, L. K.Author name used in this publication: Wang, T.2010-2011 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Recombinant Mouse PAP Has pH-Dependent Ectonucleotidase Activity and Acts through A1-Adenosine Receptors to Mediate Antinociception

    Get PDF
    Prostatic acid phosphatase (PAP) is expressed in nociceptive neurons and functions as an ectonucleotidase. When injected intraspinally, the secretory isoforms of human and bovine PAP protein have potent and long-lasting antinociceptive effects that are dependent on A1-adenosine receptor (A1R) activation. In this study, we purified the secretory isoform of mouse (m)PAP using the baculovirus expression system to determine if recombinant mPAP also had antinociceptive properties. We found that mPAP dephosphorylated AMP, and to a much lesser extent, ADP at neutral pH (pH 7.0). In contrast, mPAP dephosphorylated all purine nucleotides (AMP, ADP, ATP) at an acidic pH (pH 5.6). The transmembrane isoform of mPAP had similar pH-dependent ectonucleotidase activity. A single intraspinal injection of mPAP protein had long-lasting (three day) antinociceptive properties, including antihyperalgesic and antiallodynic effects in the Complete Freund's Adjuvant (CFA) inflammatory pain model. These antinociceptive effects were transiently blocked by the A1R antagonist 8-cyclopentyl-1, 3-dipropylxanthine (CPX), suggesting mPAP dephosphorylates nucleotides to adenosine to mediate antinociception just like human and bovine PAP. Our studies indicate that PAP has species-conserved antinociceptive effects and has pH-dependent ectonucleotidase activity. The ability to metabolize nucleotides in a pH-dependent manner could be relevant to conditions like inflammation where tissue acidosis and nucleotide release occur. Lastly, our studies demonstrate that recombinant PAP protein can be used to treat chronic pain in animal models

    Interfacility Helicopter Ambulance Transport of Neurosurgical Patients: Observations, Utilization, and Outcomes from a Quaternary Level Care Hospital

    Get PDF
    The clinical benefit of helicopter transport over ground transportation for interfacility transport is unproven. We sought to determine actual practice patterns, utilization, and outcomes of patients undergoing interfacility transport for neurosurgical conditions.We retrospectively examined all interfacility helicopter transfers to a single trauma center during 2008. We restricted our analysis to those transfers leading either to admission to the neurosurgical service or to formal consultation upon arrival. Major exclusion criteria included transport from the scene, death during transport, and transport to any area of the hospital other than the emergency department. The primary outcome was time interval to invasive intervention. Secondary outcomes were estimated ground transportation times from the referring hospital, admitting disposition, and discharge disposition. Of 526 candidate interfacility helicopter transfers to our emergency department in 2008, we identified 167 meeting study criteria. Seventy-five (45%) of these patients underwent neurosurgical intervention. The median time to neurosurgical intervention ranged from 1.0 to 117.8 hours, varying depending on the diagnosis. For 101 (60%) of the patients, estimated driving time from the referring institution was less than one hour. Four patients (2%) expired in the emergency department, and 34 patients (20%) were admitted to a non-ICU setting. Six patients were discharged home within 24 hours. For those admitted, in-hospital mortality was 28%.Many patients undergoing interfacility transfer for neurosurgical evaluation are inappropriately triaged to helicopter transport, as evidenced by actual times to intervention at the accepting institution and estimated ground transportation times from the referring institution. In a time when there is growing interest in health care cost containment, practitioners must exercise discretion in the selection of patients for air ambulance transport--particularly when it may not bear influence on clinical outcome. Neurosurgical evaluation via telemedicine may be one strategy for improving air transport triage

    Upregulation of Circulating PD-L1/PD-1 Is Associated with Poor Post-Cryoablation Prognosis in Patients with HBV-Related Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: The programmed cell death-1 receptor/programmed cell death-1 ligand (PD-1/PD-L1) pathway plays a crucial role in tumor evasion from host immunity. This study was designed to evaluate the association between circulating PD-L1/PD-1 and prognosis after cryoablation in patients with HBV-related hepatocellular carcinoma (HCC). METHODOLOGY/PRINCIPAL FINDINGS: In the present study, 141 HBV-related HCC patients were enrolled and of those 109 patients received cryoablation. Circulating PD-L1/PD-1 expression was tested by flow cytometry, and 23 patients were simultaneously evaluated for intratumoral PD-L1 expression by immunohistochemical staining. Circulating PD-1/PD-L1 expression was associated with severity of diseases in patients with HCC, and the circulating PD-L1 expression was closely correlated with intratumoral PD-L1 expression. Of the clinical parameters, PD-1/PD-L1 expression was associated with tumor size, blood vessel invasion and BCLC staging. Moreover, PD-1/PD-L1 expression dropped after cryoablation while being elevated at the time of tumor recurrence. Patients with higher expression of circulating PD-L1, as well as circulating PD-1, had a significantly shorter overall survival and tumor-free survival than those with lower expression. Multivariate analysis confirmed that circulating PD-L1 could serve as an independent predictor of overall survival and tumor-recurrence survival in HCC patients after cryoablation. CONCLUSIONS/SIGNIFICANCE: Upregulation of circulating PD-L1/PD-1 is associated with poor post-cryoablation prognosis in patients with HBV-related hepatocellular carcinoma
    • …
    corecore