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Abstract

Background: AluScan combines inter-Alu PCR using multiple Alu-based primers with opposite orientations and
next-generation sequencing to capture a huge number of Alu-proximal genomic sequences for investigation. Its
requirement of only sub-microgram quantities of DNA facilitates the examination of large numbers of samples.
However, the special features of AluScan data rendered difficult the calling of copy number variation (CNV) directly
using the calling algorithms designed for whole genome sequencing (WGS) or exome sequencing.

Results: In this study, an AluScanCNV package has been assembled for efficient CNV calling from AluScan
sequencing data employing a Geary-Hinkley transformation (GHT) of read-depth ratios between either paired
test-control samples, or between test samples and a reference template constructed from reference samples, to call the
localized CNVs, followed by use of a GISTIC-like algorithm to identify recurrent CNVs and circular binary segmentation
(CBS) to reveal large extended CNVs. To evaluate the utility of CNVs called from AluScan data, the AluScans from 23
non-cancer and 38 cancer genomes were analyzed in this study. The glioma samples analyzed yielded the familiar
extended copy-number losses on chromosomes 1p and 9. Also, the recurrent somatic CNVs identified from liver cancer
samples were similar to those reported for liver cancer WGS with respect to a striking enrichment of copy-number gains
in chromosomes 1q and 8g. When localized or recurrent CNV-features capable of distinguishing between liver and
non-liver cancer samples were selected by correlation-based machine learning, a highly accurate separation of the liver
and non-liver cancer classes was attained.

Conclusions: The results obtained from non-cancer and cancerous tissues indicated that the AluScanCNV package can
be employed to call localized, recurrent and extended CNVs from AluScan sequences. Moreover, both the localized and
recurrent CNVs identified by this method could be subjected to machine-learning selection to yield distinguishing
CNV-features that were capable of separating between liver cancers and other types of cancers. Since the method is
applicable to any human DNA sample with or without the availability of a paired control, it can also be employed to
analyze the constitutional CNVs of individuals.
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Introduction

The use of microarray platforms to perform copy num-
ber variation (CNV) calling is a valuable technique in
genomic analysis. However, next-generation sequencing
is fast becoming an attractive alternative platform for
this purpose. Compared to microarrays, next-generation
sequencing can make possible a higher resolution, mul-
tiple simultaneous analyses on the same sample, and at
least comparable detection efficiency in CNV calling [1].
Moreover, while CNV calling from microarrays requires the
establishment of a relationship between copy number and
the observed intensity for any site-specific probe [2], the
read-depth of any fragment in an output of next-generation
sequencing can be correlated to the copy number either
linearly or based on a simple Poisson model [3,4].

A variety of algorithms have been designed for CNV call-
ing from sequencing data obtained for both paired and un-
paired samples [3-10]. In general, data from whole genome
sequencing (WGS) are continuous and more evenly dis-
tributed so that they are readily fitted to simple statistical
distributions following straightforward GC-normalization.
On the other hand, CNV calling based on target-capture
sequencing such as exome sequencing and AluScan [11], is
more complex. As a method for genome-wide capture of
the sequences amplified by inter-Alu PCR using multiple
Alu-based primers with opposite ‘head type’ and ‘tail type’
orientations for next-generation sequencing, AluScan is
not only expeditious in both experimental and informatics
analysis, but also requires less DNA compared to WGS or
exome sequencing. However, the sequences analyzed by
both exome sequencing and AluScan are discontinuous.
Moreover, while exome sequencing usually involves basic-
ally the same set of fixed target regions in every experi-
ment, such that CNV calling on an unpaired sample can be
performed without any control [7], the inter-Alu sequences
analyzed by AluScan depend on the Alu-based PCR
primers employed. As a result, CNV-calling algorithms de-
veloped for WGS or exome sequencing are not readily ap-
plicable to AluScans. Moreover, it is possible that Alu
sequences could be one of the factors that induce CNVs,
because the high similarity of neighboring Alu elements
could cause homologous recombination that may result in
changes in copy number [12,13].

In view of this, an AluScanCNV package has been as-
sembled and optimized in the present study for efficient
calling of CN'Vs from the AluScan of a test sample with or
without a paired control. In the calling procedure summa-
rized in Figure 1, the human genome is divided into
equal-length windows, the size of which can be varied.
Read-depth calling is performed in every window of each
sample. For paired sample analysis, only those windows
with a finite read-depth in both the target and control
samples are subjected to CNV calling. For unpaired sam-
ples, a reference template is constructed from pooled
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reference samples by the method of Sathirapongsasuti
et al. [3] with adjustment for GC content to enhance ro-
bustness, and only those windows with a finite read-depth
in both target sample and reference template are subjected
to further analysis. CNV calling is performed by two differ-
ent pathways: (A) Detection of localized CNV is per-
formed using the Geary-Hinkley transformation (GHT) to
identify read-depth ratios that could be CNVs. For a group
of samples, recurrent CNVs amongst the localized CNVs
found are identified based on the assumption that all copy
number alterations are independent as invoked in the
GISTIC algorithm [14], plus the use of Bonferroni correc-
tion; and (B) the circular binary segmentation (CBS)
method of Olshen et al. [15] is employed to join together
CNV-containing windows with the same copy number
into extended CNVs. For both pathways, significant biases
due to GC content and total reads are reduced by appro-
priate normalizations.

In current cancer research, CNV is regarded as an im-
portant source of tumorigenesis besides single nucleotide
substitution and large structural variation [16,17]. Ovarian
cancer, breast carcinoma and lung cell carcinoma for ex-
ample are categorized as C-class (C stands for CNV) tu-
mors [18], and a variety of cancers are associated with
CNVs in tumor suppressor genes and oncogenes such as
TP53 and RET [17,19].

Rare constitutional CNVs are well known to be associ-
ated with individual cancers, but recurrent constitutional
CNVs are usually found to be only low to modest in
penetrance suggesting that they could become significant
factors in the aggregate [17,20-23]. In our earlier study, re-
current constitutional CNV-features selected by machine
learning were found to be capable of distinguishing be-
tween genomes with higher predispositions to cancer and
those with lower predispositions, and thereby provide a
basis for the prediction of generalized cancer predispos-
ition [24]. In the present study, the generality of this ap-
proach has been expanded by machine-learning selection
of localized as well as recurrent somatic CNV-features
with the capability of distinguishing between different
types of cancer such as liver versus non-liver cancers.

Methods

DNA samples and AluScan sequencing

Inter-Alu PCR amplifications were performed on 0.1 ug of
each of the DNA samples in Additional file 1: Table S1
using, except where otherwise indicated, the four Alu-based
PCR primers AluY278T18 (5-GAGCGAGACTCCGTC
TCA-3), AluY66H21 (5-TGGTCTCGATCTCCTGACCT
C-3), R12A/267 (5-AGCGAGACTCCG-3) and L12A/8
(5-TGAGCCACCGCG-3) (0.075 uM each), followed by
sequencing of the amplicons with the Illumina-Solexa plat-
form and mapping as described [11]. The AluScan se-
quences of the blood samples from 23 non-cancer subjects
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Figure 1 Schematic diagram of the AluScanCNV calling method. CNV calling is conducted employing the test sample either with a reference
template constructed from pooled reference samples in (I) unpaired analysis, or with a paired control sample in () paired analysis, to yield
read-depth ratios. GHT is used to call localized CNVs and in turn recurrent CNVs; or alternately CBS is used to call extended CNVs.
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(column 3 of Additional file 1: Table S1) were pooled to-
gether for the construction of a “23-sample reference tem-
plate” for unpaired analysis (Figure 1). Descriptions of the
various samples are given in Additional file 2: Table S2.

Correlation of read-depth

The genome in each DNA sample was divided into con-
tiguous windows 5 kb in size. The read-depth for each
window was calculated using the genomeCoverageBed
program in BEDtools [25]. The read-depths of the high-
est 5% were adopted as the 95% quantile value for the
read-depth distribution for that sample. Read-depths of
larger window sizes (100 kb, 300 kb and 500 kb) were
generated by merging the read-depth values of 5 kb
windows.

Calling of GHT-based localized CNVs
In the AluScanCNV procedure, detection of a copy-
number gain or loss in a test sample relies on compari-
son of the read-depth of a sequence window on the test
sample with that on either a paired control sample in
the case of ‘paired analysis’, or a reference template con-
structed from pooled reference samples in the case of
‘unpaired analysis’, yielding in either case the read-depth
ratio for that particular window (Figure 1). The source
codes for the AluScanCNV procedure including read-
depth calculation are given in Additional file 3: Source
code of AluScanCNV.

In calling localized CNVs, the read-depth distribution
R in any window is assumed to be a Poisson distribution
Po(A) with parameter A:

R Po(1) (1)
which fits R into Po(l) with 1 representing the mean
value of the distribution. Since the sums of Poisson-
distributed random variables will belong to a Poisson
distribution if each of those independent random vari-
ables is Poisson-distributed, it follows that:

R1~PO(/11)
R2~PO(/12)
R3~PO(/13)

R, ~ Po(},) are independent, and therefore

Ro= (D27 ki) Pold,)

where
Ae=M+da+ A3+t dy=> " N

Hence a reference template can be constructed by
grouping together a series of reference samples for cal-
culating the read-depth ratio of a corresponding window
on an unpaired test sample.

The Poisson distribution in Eqn. 1 can be approxi-
mated by a normal distribution if the average read-depth
in the window is sufficiently high to yield [4]:

R~N(u, 0?) (3)

Since mean value # and variance ¢” are equal in a nor-

mal distribution, both can be represented by A:
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R~-N(A, 1) (4)
For a test sample:
R"“N(/‘,t, /‘,t) (5)

where A, represents the mean read-depth value of all the
windows analyzed in the test sample. For a reference
template or paired control:

RNN(AM Ac) (6)

where A represents the mean read-depth value of all the
windows analyzed in a control sample in the case of
paired analysis, or in a reference template in the case of
unpaired analysis. With either unpaired or paired ana-
lysis, only those windows that display a finite read-depth
in the test sample as well as a finite read-depth in the
reference template or paired control are analyzed.

The read-depth ratio z between test sample and refer-
ence template or paired control at the same window is
given by:

ch

(7)
where R, represents the read-depth value of a given
window in test sample, and R, represents that of the
corresponding window in reference template or paired
control. Upon adjustment for total reads, we have:
4
=zZX—= 8

r=axyy (8)
where N;=X% R, and N,=X R, The distribution of r is
complex. However, when both R, and R, are normally
distributed, under certain conditions the distribution of
r can be approximately transformed into variable ¢ using
the GHT, or Geary-Hinkley transformation [26].

Ao X r=\
f= T (9)
V4 )\C X r2 + At

where A, A\, and r are respectively given by Eqn. 5,
Eqn. 6, Eqn. 8.

To normalize with respect to GC content, the win-
dows in a genome are divided into 20 groups based on
GC content levels with a 5% increment from one level
to the next, and Eqn. 9 becomes:

(10)

where Xt represents the mean value of read-depths in
all the windows in a GC-content group in the test sam-
ple, and )\/C that in the same GC-content group in the
reference template or paired control; r is again given by
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Eqn. 8. Both the distributions of transformed ¢-values
(5 kb window size) based on Eqn. 9 and Eqn. 10 fit the
standard normal distribution (Figure 2).

For variable ¢ in Eqn. 9, its cumulative standard nor-
mal distribution function is @(t), and we have:

p=2(1-9(t))
p=20() if

Copy-number gain is called for a window when
p <0.05 and r >1, and copy-number loss is called for a
window when p <0.05 and r < 1. No CNV is called for a
window if p >0.05 or r =1. @(¢) in Eqn. 11 and Eqn. 12
is replaced by ®(¢ ) when Eqn. 10 is used instead of
Eqn. 9.

Since the GHT represents a key step in CNV calling
using Eqns. 11 and 12, a CNV called using these equa-
tions may be referred to as a GHT-based localized CNV
in distinction from CNVs that are called by other means.

According to Chiang et al. [27], the theoretical mini-
mum window size for CNV detection is determined by
the required power, sequencing amount, coverage size
and reference genome size. In the present study, AluS-
cans with ~30 M reads covering ~150 M unique sequences
(Additional file 2: Table S2) were aligned to the ~3 Gb hu-
man genome. On this basis, 50 kb would be the theoretical
minimum window size for power >0.99, which however
has to be increased for higher accuracy in CNV calling [4].

if >1 (11)

(12)

Identification of recurrent CNVs

After the GHT-based localized CNVs have been detected
in a group of samples using a reference template or paired
control (Figure 1), matrix M is constructed as follows with

5. without GC normalization
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Figure 2 Distribution of transformed t-values. Upper panel - without
GC content normalization; and lower panel - with GC content
normalization. Y-axis shows the frequency and X-axis shows the t-value
from Eqgn. 9 or 10. The t-values were estimated from the AluScan of GL2B
as test sample compared with the 23-sample reference template, and
window size was 5 kb.
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each row representing a window, and each column repre-
senting a sample. All the samples must show a finite num-
ber of reads in a given window for that window to be
included in the matrix M:

10
M= |0 1
01

Thus M is an “m x n” matrix with m candidate win-
dows (rows) and n samples (columns). Each element in
M takes on a binary value of 0 or 1, with 1 representing
‘CNV identified’ and 0 representing ‘no CNV identified’.
M;; therefore describes the CNV status of the ith window
in the jth sample. Mi- stands for the CNV status at win-
dow i across all samples; and M stands for the CNV
status at all the windows in sample ;.

Based on the assumption that all copy number alter-
ations are independent [14], P(k) the distribution of CNVs
in the different samples is described by the Poisson bi-
nomial distribution of a sum of independent Bernoulli
trials [28]:

i) =S TTra T (1-26)

AcFracA  BeA°

(13)

where Fy is the set of all subsets of k integers encoun-
tered, A the set of matrix elements with value ‘1’, A€ the
set of matrix elements with value ‘0’, p, the frequency of
‘1’ elements in the samples and pyis the frequency of ‘0’
elements in the samples. Based on Eqn. 13, the ‘poibin’
package in R-program [29] is employed to calculate the
cut-off frequency in the P(k) distribution that gives rise
to p <0.01, which is the criterion for the identification of
a recurrent CNV (Figure 3).

Calling of CBS-based extended CNVs
To identify extended CNVs that cover multiple windows,
the CBS, or circular binary segmentation algorithm [15] is
employed to join together neighboring windows with the
same read-depth ratio into an extended CNV segment. In
this instance, GC content normalization is performed
using the following equation [30]:
Dcorrected = Dglobal - X ’me/DGC (14)
where Dy, represents the median read-depth across
the genome of a test sample, a reference sample or a
paired control, D,,,, a read-depth before GC correction,
and Dgc the median read-depth for windows in the
same GC content group. By obtaining the D,y ecreq Of @
test sample, viz. D;_corecreq, and that of the corresponding
window on the reference template or paired control, viz.
D, _correctea, the GC-corrected read-depth ratio is given
by:
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Figure 3 Poisson binomial distribution of CNVs among samples.
The frequency for any window is the percentage of total samples that
display a CNV at that window, and the density is the fraction of all the
windows analyzed that display a given frequency. Accordingly, CNVs
that give rise to frequencies to the right of the cut-off frequency
(indicated by red line) represent CNVs that occur at an exceptionally
high percentage of samples with p <0.01, and are therefore regarded
as recurrent CNVs. The curve shown was calculated using localized
CNVs called from the AluScans of the 38 cancer samples in column 2
of Additional file 1: Table S1, in each case employing for comparison

the 23-sample reference template.

r= [Dt—corrected]/ [Dc—corrected] (15 )

Thereupon r is converted into a Z score by means of
Eqn. 16 prior to application of the CBS algorithm:

_In(r) — mean value of In(r)
~ standard deviation of In(r)

(16)

where the ‘mean value of In(r)" and ‘standard deviation
of In(r)’ refer to the In(r) values across all the analyzed
windows of the test sample. On this basis, a significant
difference between the Z scores of any two neighboring
windows displaying a copy number gain or copy number
loss will indicate a discontinuity that rules out the possi-
bility of the two neighboring windows belonging to the
same extended CNV. Otherwise, without such discon-
tinuity, these neighboring CNVs will be regarded as part
of an extended CNV. Notably, a high correlation be-
tween the read-depth distributions of test sample and
that of reference template or paired control is a pre-
requisite to CBS-based CNV calling. The quantile-
quantile (Q-Q) plots in Figure 4 show that such a high
correlation in fact prevailed for the AluScan sequence
data obtained under the experimental conditions de-
scribed in the Methods section for paired analysis using
a paired control as well as unpaired analysis using a ref-
erence template.
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Figure 4 Q-Q plot of read-depth distributions. In paired analysis
(A), test glioma tissue GL2T was compared to its paired non-cancerous
control GL2B; Pearson’s correlation coefficient was 0.9986. In unpaired
analysis (B), the same test sample was compared to the 23-sample
reference template; Pearson’s correlation coefficient was 0.9939. The
read-depths of 5 kb windows are represented by densely overlapping
solid circles, and the red lines are the linear regression lines.

The source codes implementing modified cnv.R in
CNV-seq [4] and DNAcopy [31] in R-program for
CBS-based calling of extended CNVs are included in
Additional file 3: Source code of AluScanCNV.

Machine-learning selection of CNV-features to classify
different types of cancers

The application of localized or recurrent somatic CNV-
features from the collection of CNVs identified from
AluScans of cancer samples by means of AluScanCNV to
distinguish between different types of cancers was per-
formed as previously described for the use of recurrent
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constitutional CNV-features to distinguish between
constitutional genomes with high versus low cancer-
predispositions [24]. Distinguishing CNV-features were
selected using the correlation-based feature selection
method (CfsSubsetEval) [32,33] with BestFirst search
from the Weka package [34], and classification of sam-
ples was carried out with 1,000 iterations of two-fold
cross validation employing the Naive Bayes algorithm.
Accuracy of classification was evaluated in terms of
AUC, viz. ‘Area Under the receiver operating character-
istic Curve’ and the F-score given by:

F-score = 2TP/(2TP + FP + FN)

where TP, FP and FN represent true positives, false posi-
tives and false negatives respectively.

Clustering of samples was performed with the Euclid-
ean distance method and ward.D cluster method of the
‘pvclust’ package in R [35].

Results and discussion

The AluScanCNV package depends on two important
prerequisites for CNV calling from AluScan sequences.
First, there must be a close approximation of the GHT-
derived t-distribution to a normal distribution in order
to call localized CNVs and recurrent CNVs. Secondly,
there should be a close correlation between the read-
depths in the test sample and paired control or reference
template in using CBS to call extended CNVs: while this
is not essential for the application of CBS, it provides
important extra assurance for the appropriateness and
accuracy of such application. While close correlation be-
tween test sample and its paired control in this regard
might be expected, it needs to be verified that a close
correlation exists between test sample and a reference
template constructed from reference samples.

In Figure 2, where the AluScans for blood sample
GL2B and the 23 non-cancer reference samples that
gave rise to the reference template were all performed
with four Alu-based PCR primers as described in
Methods, the t-values derived from read-depth ratios
through the GHT conformed closely to a normal distri-
bution either with or without GC normalization, thereby
confirming the applicability of the GHT to AluScan se-
quence data. Since the t-distribution was well represented
by a normal curve even without GC normalization in this
example, the contribution made by GC normalization
was not manifest. However, the advantage of GC
normalization has been pointed out by other workers
[7]. Moreover, in Additional file 4: Figure S1, where a
mismatch was introduced such that the AluScan for
the test sample was conducted using only three Alu-
based primers, whereas the reference-sample AluScans
were carried out using four Alu-based primers, the
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deviation of the ¢-distribution from a normal curve
was pronounced without GC normalization, but sub-
stantially improved with GC normalization, indicating
that GC normalization enhanced the robustness of
GHT-based CNV calling.

Q-Q plots in Figure 4A and 4B show that the high
correlation between the read-depths of the test sample
GL2T and those of its paired control GL2B (4A: Pearson’s
coefficient =0.999), and the high correlation between the
read-depths of GL2T and those of the reference template
(4B: Pearson’s coefficient =0.994). The results therefore
confirmed that a close correlation was obtained in both
cases, and the use of the CBS algorithm to call extended
CNVs from AluScans is valid when AluScan sequencing
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is performed employing the experimental conditions de-
scribed in the Methods section.

Calling of GHT-based localized and recurrent CNVs

In Figure 5, localized CNVs were called from the AluScan
of GL2T tumor cell DNA compared to the reference tem-
plate employing 5 kb, 100 kb, 300 kb and 500 kb window
sizes. The results obtained with all these window sizes in-
dicated that the distribution of CNVs over various auto-
somal chromosomes were by no means uniform. Instead,
they all revealed an enrichment of localized copy number
gains in chromosome 1, and enrichment of localized copy
number losses in chromosome 1 and 9. The enrichments at
these two chromosomes compared to other chromosomes
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Figure 5 Chromosomal distribution of localized CNVs called using different window sizes. GHT-based localized CNVs were called from
GL2T AluScan compared to the 23-sample reference template using 5 kb (A), 100 kb (B), 300 kb (C) and 500 kb windows (D). CNV Frequency on
the y-axis represents the fraction of windows on a chromosome showing CNV gain (upward blue bars) or CNV loss (downward red bars).
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-

Figure 6 Chromosomal locations of localized CNVs in a glioma sample using 500 kb windows. GHT-based localized CNVs were called from
AluScan data of glioma tumor tissue GL2T compared to (A) its paired blood control GL2B AluScan, and to (B) the 23-sample reference template
using 500 kb windows. Upward blue bars represent copy number gains, and downward red bars copy number losses.
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Figure 8 Hierarchical clusters of liver and non-liver cancers based on distinguishing CNV-features. (A) Clustering using localized CNV-features and
(B) Clustering using recurrent CNV-features. The 21 liver and 16 non-liver cancers analyzed are described in Additional file 2: Table S2. The distinguishing
localized and recurrent CNV-features selected by machine learning for the purpose of clustering these two classes of cancers are listed in Additional file &:
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clusters indicate the approximate unbiased probabilities, and the three incorrectly clustered samples in Part (B) are shown in red. Clustering of samples was

were detectible with the 5 kb and 100 kb windows, and
became increasingly prominent with the 300 kb and
500 kb windows. These results were consistent with a de-
creased impact of sheer chance with the use of larger win-
dows [4,27]. The detailed chromosomal distribution of
localized CNVs identified using 500 kb windows further
pinpointed the enrichment of copy number losses on
chromosomes 1p and 9, and the enrichment of copy num-
ber gains on chromosome 1q (Figure 6). In the following
analysis, 500 kb windows were employed for localized
CNV calling from cancer AluScan sequences (as in
Figures 7 and 8), whereas 5 kb windows were employed
for extended CNV calling (as in Figure 9).

When recurrent somatic CNVs were called from the
AluScans of liver cancers, the distribution of the CNV

gains and losses, indicated by red peaks in Figure 7, were
unevenly distributed among different chromosomes with
a particularly high concentration of CNV gains in chro-
mosomes 1q and 8¢, in accord with the CNVs identified
from WGS data of liver cancers [36] which are repre-
sented by orange column in the figure. This accord be-
tween the recurrent CNVs called from AluScans and
WGS data provided useful validation for CNV calling
from AluScans by means of AluScanCNV.

Identification of CBS-based extended CNVs

Application of Eqn. 16 to call CBS-based extended
CNVs from the AluScan of glioma GL2T vyielded Z
scores based on a comparison between the test sample
and either a paired control (Figure 9A) or the reference
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Figure 9 Chromosomal distribution of extended CNVs in
glioma GL2T. (A) GL2T tumor tissue was compared with either (A)
paired control blood sample GL2B from the same patient; or (B) the
23-sample reference template. The Z scores of windows are shown
by green and black dots on alternate autosomal chromosomes. Red
horizontal bars with Z >0.2 represent extended copy number gains,
and those with Z <—0.2 represent extended copy number losses.

template (Figure 9B). Each dot in the plot, colored green
and black on alternate autosomal chromosomes 1 to 22
represents the Z score for a window. The CBS-based ex-
tended CNVs revealed as red horizontal bars joining up
neighboring windows with the same Z score were similar
in Figure 9A and 9B, both of which exhibited large ex-
tended copy-number losses on chromosomes 1p and 9,
and a large copy-number gain on chromosome 1q. The
agreement between Figure 9A and 9B confirmed that ei-
ther a paired control or a reference template can be
employed for CNV analysis as indicated in Figure 1.
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That the extended copy number losses on chromosomes
1p and 9 were both frequently observed in gliomas
pointed to the usefulness of AluScanCNYV for calling ex-
tended CNVs from AluScan sequences.

A comparison between the extended CNV profile of
the primary glioma GL1T (Additional file 5: Figure S2)
and that of its recurrent cancer GL2T (Figure 9) showed
that the two profiles were extensively similar in both
paired and unpaired analysis. Therefore cancer recur-
rence in this instance was not accompanied by any alter-
ation in extended CNVs.

Cancer classification using machine learning-selected
CNV-features

Previously we found that machine learning can be
employed to select from microarray-based recurrent
CNV-features that are capable of distinguishing between
constitutional genomes with a high generalized predis-
position to cancer and those with a low predisposition
[24]. When this machine learning procedure was applied
to the localized or recurrent somatic CNVs called from
the AluScans of 21 liver cancers and 16 non-liver can-
cers shown in Additional file 2: Table S2, 43 localized
CNV-features were selected (shown in Additional file 6:
Table S3A) for their capability of distinguishing between
these two classes of cancers with AUC =1.000 and F-
score =1.000 in 1,000 iterations of two-fold cross valid-
ation based on the Naive Bayes algorithm; as shown in
the dendrogram in Figure 8A, these localized CNV-
features enabled the hierarchical clustering of the 37
cancer samples into the liver and non-liver classes with
100% accuracy. On the other hand, only 12 recurrent
CNV-features were selected (shown in Additional file 6:
Table S3B) with AUC =0.982 and F-score =0.889 in
1,000 iterations of two-fold cross validation based on the
Naive Bayes algorithm; and these recurrent CNV-
features enabled the hierarchical clustering of the 37
cancer samples into the liver and non-liver classes with
34/37 viz. 91.9% internal accuracy, with three incorrect
entries as shown in the dendrogram in Figure 8B. It
might be noted in this regard that, because the total of
37 cancer samples employed bordered on the minimum
for recurrent CNV calling, there is a possibility that the
91.9% internal accuracy attained with the recurrent
CNV-features might improve with a larger sample size.
The demonstrated internal accuracy clearly showed that
the selected CNV-features called by AluScanCNV are
highly correlated to cancer-type, and therefore merit in-
depth investigation to elucidate the mechanistic basis of
such cancer-type correlation. In any event, the findings
in Figures 8A and 8B pointed to the utility of CNV call-
ing from AluScan sequences, and the distinguishing
power of the machine-selected localized and recurrent
CNV-features strongly suggests that such CNV-features
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Figure 10 Comparison of CNV callings by AluScanCNV and FREEC. (A) Chromosomal distribution of CNV gains obtained by FREEC based on
hg18 [7] (green bands above cytobands) or by the CBS-based extended CNV calling in AluScanCNV (orange bands below cytobands). Correlation
between the two sets of results yielded Pearson’s R =0.776. (B) Chromosomal distribution of CNV losses obtained by FREEC (green bands above
cytobands) and by AluScanCNV (orange bands below cytobands). Correlation between the two sets of results yielded Pearson’s R =0.935. The
same dataset on cancer cell line HCC1143 from ref.27 was employed in all the CNV estimations. Correlation R values were estimated using the
human genome graph function in UCSC (http://genome.ucsc.edu/cgi-bin/hgGenome).
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are endowed with correlations with cancer types that
could lead to valuable insight into type-specific factors
underlying the oncogenesis and propagation of different
types of cancers.

Performance on external dataset

In our results, a two-fold validation was given for the ac-
curacy of our methods. First, the CNVs detected on
chromosomes 1 and 9 in glioma GL1T and GL2T have
been reported earlier in studies on glioma [37-39]; sec-
ondly, the recurrent CNVs on chromosomes 1q and 8q
identified in our 21 liver cancers have been reported on
a WGS study [36]. As well, to confirm further the accur-
acy of CNV calling by our methods, external data from a
cancer cell line [27] that were used as test data in FREEC
[7] were analyzed using our procedure for CBS-based
calling of extended CNV. The results obtained were
found to be highly correlated with the results obtained
with FREEC, yielding Pearson’” R =0.935 in CNV loss
calling, and Pearson’s R =0.776 in CNV gain calling
(Figure 10).

Conclusions

The AluScan platform, comprising the usage of
inter-Alu PCR with multiple Alu-based PCR primers
to generate a huge range of amplicons for next-generation
sequencing, enables the facile capture of Alu-proximal se-
quences that are widespread throughout the human gen-
ome. It makes possible a rapid scan of mutations and
alterations in diverse genomic regions including exons, in-
trons and other non-coding regions employing only ~0.1 pg
DNA samples [11].

The results in Figures 2 and 4 showed that the dis-
tribution of ¢-values obtained from AluScan sequences
conformed closely to a normal distribution, and the
read-depths of a test AluScan sample were closely
correlated with those of a paired control AluScan or
a reference template constructed from the AluScans
of reference samples. These findings established the
validity of the AluScanCNV package for calling CNVs
from AluScan sequences, which was further confirmed by
the properties of the AluScan-derived CNVs identified in
various cancer samples.
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In Figure 9 and Additional file 5: Figure S2, the large ex-
tended copy-number losses identified on chromosomes 1p
and 9 in the recurrent GL2T and primary GL1T tumors
were entirely consistent with the frequent occurrence of
copy number losses at these locations among gliomas
[37-39] . Moreover, the localized CNVs of GL2T shown in
both panels of Figure 6 clearly pointed to the concentra-
tion of localized CNV losses on chromosomes 1p and 9,
and concentration of localized CNV gains on chromo-
some 1q, in complete agreement with the occurrence of
extended CNV gains and losses on these chromosomes in
Figure 9, even though the calling of localized CNVs and
the calling of extended CNVs depend on different approx-
imations: the former requires a close conformation of ¢
values to a normal distribution, whereas the latter requires
a close correlation between the read-depths of a test sam-
ple and the read-depths of a reference template or paired
control.

As well, in Figure 7 the distribution of recurrent som-
atic CNVs called from AluScans revealed a striking en-
richment of CNV gains in chromosomes 1q and 8q
compared to other chromosomes. Such enrichment in
1q and 8q likewise represented the most outstanding
property of CNVs called from a WGS study [36]: there-
fore there was excellent agreement in this regard be-
tween the CNVs called from AluScans and the CNVs
called from WGS. Given the small DNA sample require-
ment and much lighter data-processing task of AluScan
relative to WGS, the AluScan platform would provide an
expedited means for characterizing the CNV profiles of
normal and diseased human genomes even with small
amounts of biopsied tissues. Moreover, because the
AluScan method amplifies DNA sequences only from
the Alu element-rich human genome but not from mi-
crobial genomes, it is applicable to the analysis of
esophageal, stomach, intestinal, pulmonary and wound
samplings etc. with little interference from the presence
of microbial DNAs.

When the localized or recurrent CNVs obtained from
liver and non-liver cancers derived from AluScans were
subjected to machine learning-selection, distinguishing lo-
calized or recurrent CNV-features could be selected that
enabled a highly accurate classification between liver can-
cers and non-liver cancers (Figure 8). These results cor-
roborated and expanded our earlier finding that recurrent
constitutional CNV-features provided a valuable basis for
the classification and prediction of high versus low consti-
tutional predisposition to cancer [24]. In so doing, they
have substantiated the usefulness of machine-learning se-
lected CNV-features, both recurrent and localized ones,
for identifying CNVs in the germ-line or cancer genomes
that are correlated with the attributes of predisposition to
cancer and cancer typing. An extension of this CNV-
feature based approach to identify the role of CNVs
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important to other cancer attributes such as cancer sta-
ging and susceptibility or resistance to different treat-
ment modalities, as well as the CNVs important to
other diseases besides cancers likewise merits in-depth
investigation.

Availability of supporting data
The AluScan sequencing data of the 63 samples listed in
Additional file 1: Table S1 are available upon request.

Additional files

Additional file 1: Table S1. Samples employed for CNV calling in this
study.

Additional file 2: Table S2. Information on the 63 samples included in
Additional file 1.

Additional file 3: Figure S1-S12. Source code of AluScanCNV. This file
contains all the source code for calling CNV and detecting significantly
recurrent CNVs as well as the required input file. All the code files are
written in R and perl.

Additional file 4: Figure S1. Distribution of t-values obtained with
mismatched AluScans. Upper panel - without GC content normalization;
and lower panel - with GC content normalization. In contrast to Figure 2,
where the AluScan of GL2B DNA and the AluScans of the 23-sample
reference template were obtained employing the same four Alu-based
PCR primer set described in Methods, a mismatch in primer sets was
introduced in the present figure: the AluScan of GL3B test sample DNA
was performed using only three of the four Alu-based PCR primers
described in Methods (with omission of primer L12A/8), thus differing
from the four primers employed in the 23-sample reference template.

Additional file 5: Figure S2. Chromosomal distribution of extended
CNVs in glioma GL1T. (A) GL1T tumor tissue was compared with either (A)
paired control blood sample GL2B from the same patient; or (B) the
23-sample reference template. The Z scores of windows are shown by
green and black dots on alternate autosomal chromosomes. Red horizontal
bars with Z>0.2 represent extended copy number gains, and those with Z
<-0.2 represent extended copy number losses.

Additional file 6: Table S3. A Localized CNV-features selected from
autosomal chromosomes for classification between liver and non-liver
cancers. B Recurrent CNV-features selected from autosomal chromosomes
for classification between liver and non-liver cancers.
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