37 research outputs found
How Convenient Is Your Kitchen?
Convenience and safety are important characteristics of a well-planned kitchen. A recent survey, however, shows that many Iowa farm kitchens are weak in these features. What about your kitchen? Is it Grade A
Divine Destiny or Free Choice: Nietzsche\u27s Strong Wills in the Harry Potter Series
This paper considers the influences of fate and free will in J.K. Rowling’s Harry Potter series. Current scholarship on the topic generally agrees that Rowling champions free will by allowing her characters learning opportunities through their choices. By using Friedrich Nietzsche’s philosophy on fate and free will and by more closely examining the Harry Potter texts, this paper demonstrates fate’s stronger presence in Rowling’s fictional world. Certain strong-willed characters rise above their peers’ fated states by embracing their personal fates and exercising their wills to create themselves within fated destinies. The paper also explores the possibility of an authority directing fate
How To Live With Your Carpet
A carpet on the floor brings beauty and comfort to a home. But it also brings unhappiness is we have to worry all the time about keeping it spotless. Here are some keys to better care and enjoyment of carpeting
Loss of the Intellectual Disability and Autism Gene Cc2d1a and Its Homolog Cc2d1b Differentially Affect Spatial Memory, Anxiety, and Hyperactivity
Hundreds of genes are mutated in non-syndromic intellectual disability (ID) and autism spectrum disorder (ASD), with each gene often involved in only a handful of cases. Such heterogeneity can be daunting, but rare recessive loss of function (LOF) mutations can be a good starting point to provide insight into the mechanisms of neurodevelopmental disease. Biallelic LOF mutations in the signaling scaffold CC2D1Acause a rare form of autosomal recessive ID, sometimes associated with ASD and seizures. In parallel, we recently reported that Cc2d1a-deficient mice present with cognitive and social deficits, hyperactivity and anxiety. In Drosophila, loss of the only ortholog of Cc2d1a, lgd, is embryonically lethal, while in vertebrates, Cc2d1a has a homolog Cc2d1b which appears to be compensating, indicating that Cc2d1a and Cc2d1b have a redundant function in humans and mice. Here, we generate an allelic series of Cc2d1a and Cc2d1b LOF to determine the relative role of these genes during behavioral development. We generated Cc2d1b knockout (KO), Cc2d1a/1b double heterozygous and double KO mice, then performed behavioral studies to analyze learning and memory, social interactions, anxiety, and hyperactivity. We found that Cc2d1a and Cc2d1b have partially overlapping roles. Overall, loss of Cc2d1b is less severe than loss of Cc2d1a, only leading to cognitive deficits, while Cc2d1a/1b double heterozygous animals are similar to Cc2d1a-deficient mice. These results will help us better understand the deficits in individuals with CC2D1A mutations, suggesting that recessive CC2D1B mutations and trans-heterozygous CC2D1A and CC2D1B mutations could also contribute to the genetics of ID
A Bayesian Approach to Analyse Genetic Variation within RNA Viral Populations
The development of modern and affordable sequencing technologies has allowed the
study of viral populations to an unprecedented depth. This is of particular
interest for the study of within-host RNA viral populations, where variation due
to error-prone polymerases can lead to immune escape, antiviral resistance and
adaptation to new host species. Methods to sequence RNA virus genomes include
reverse transcription (RT) and polymerase chain reaction (PCR). RT-PCR is a
molecular biology technique widely used to amplify DNA from an RNA template. The
method itself relies on the in vitro synthesis of copy DNA from
RNA followed by multiple cycles of DNA amplification. However, this method
introduces artefactual errors that can act as confounding factors when the
sequence data are analysed. Although there are a growing number of published
studies exploring the intra- and inter-host evolutionary dynamics of RNA
viruses, the complexity of the methods used to generate sequences makes it
difficult to produce probabilistic statements about the likely sources of
observed sequence variants. This complexity is further compounded as both the
depth of sequencing and the length of the genome segment of interest increase.
Here we develop a Bayesian method to characterise and differentiate between
likely structures for the background viral population. This approach can then be
used to identify nucleotide sites that show evidence of change in the
within-host viral population structure, either over time or relative to a
reference sequence (e.g. an inoculum or another source of infection), or both,
without having to build complex evolutionary models. Identification of these
sites can help to inform the design of more focussed experiments using molecular
biology tools, such as site-directed mutagenesis, to assess the function of
specific amino acids. We illustrate the method by applying to datasets from
experimental transmission of equine influenza, and a pre-clinical vaccine trial
for HIV-1
HIV-1 infected monozygotic twins: a tale of two outcomes
<p>Abstract</p> <p>Background</p> <p>Replicate experiments are often difficult to find in evolutionary biology, as this field is inherently an historical science. However, viruses, bacteria and phages provide opportunities to study evolution in both natural and experimental contexts, due to their accelerated rates of evolution and short generation times. Here we investigate HIV-1 evolution by using a natural model represented by monozygotic twins infected synchronically at birth with an HIV-1 population from a shared blood transfusion source. We explore the evolutionary processes and population dynamics that shape viral diversity of HIV in these monozygotic twins.</p> <p>Results</p> <p>Despite the identical host genetic backdrop of monozygotic twins and the identical source and timing of the HIV-1 inoculation, the resulting HIV populations differed in genetic diversity, growth rate, recombination rate, and selection pressure between the two infected twins.</p> <p>Conclusions</p> <p>Our study shows that the outcome of evolution is strikingly different between these two "replicates" of viral evolution. Given the identical starting points at infection, our results support the impact of random epigenetic selection in early infection dynamics. Our data also emphasize the need for a better understanding of the impact of host-virus interactions in viral evolution.</p
The interplay between structure and agency in shaping the mental health consequences of job loss
Main themes that emerged from the qualitative exploration of the psychological distress of job loss included stress, changes to perceived control, loss of self-esteem, shame and loss of status, experiencing a grieving process, and financial strain. Drawing on two models of agency we identified the different ways workers employed their agency, and how their agency was enabled, but mainly constrained, when dealing with job loss consequences.
Respondents’ accounts support the literature on the moderating effects of economic resources such as redundancy packages. The results suggest the need for policies to put more focus on social, emotional and financial investment to mediate the structural constraints of job loss. Our study also suggests that human agency must be understood within an individual’s whole of life circumstances, including structural and material constraints, and the personal or interior factors that shape these circumstances.The authors acknowledge support from the National Health and Medical
Research Council Capacity Building Grant (324724). The research was
supported by the SA Department of Health and the SA Department of
Families and Communities through the Human Services Research and
Innovation Program (HSRIP), and the Australian Research Council Linkage
Program (LP0562288), with the Department of Health (DOH) serving as
Industry Partner. Professor Fran Baum was supported by an ARC Federation
Fellowship and Drs Newman and Ziersch by the SA Premier’s Science and
Research Fund
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019.
Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019