113 research outputs found

    Casimir scaling as a test of QCD vacuum

    Get PDF
    Recent accurate measurements of static potentials between sources in various representations of the gauge group SU(3) performed by G.Bali provide a crucial test of the QCD vacuum models and different approaches to confinement. The Casimir scaling of the potential observed for all measured distances implies strong suppression of higher cumulant contributions. The consequences for the instanton vacuum model and the spectrum of the QCD string are also discussed.Comment: LaTeX, 15 pages, 1 figur

    Dephasing in Disordered Conductors due to Fluctuating Electric Fields

    Full text link
    We develop a novel eikonal expansion for the Cooperon to study the effect of space- and time-dependent electric fields on the dephasing rate of disordered conductors. For randomly fluctuating fields with arbitrary covariance we derive a general expression for the dephasing rate which is free of infrared divergencies in reduced dimensions. For time-dependent external fields with finite wavelength and sufficiently small amplitude we show that the dephasing rate is proportional to the square root of the electromagnetic power coupled into the system, in agreement with data by Wang and Lindelof [Phys. Rev. Lett. {\bf{59}}, 1156 (1987)].Comment: 17 Latex-pages, one figure; we now give more technical details and discuss the screening problem more carefully; to appear in Phys. Rev.

    Gauge fields and infinite chains of dualities

    Get PDF
    We show that the particle states of Maxwell's theory, in DD dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E11. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincar\'e group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.Comment: 37 page

    Fermion sea along the sphaleron barrier

    Full text link
    In this revised version we have improved the treatment of the top and bottom quark mass. This leads to slight changes of the numerical results, especially of those presented in Fig.4. The discussion of the numerical procedure and accuracy has been extended.Comment: 39 pages (LaTex) plus 5 figures (uuencoded postscript files); RUB-TPII-62/93, to appear in Phys.Rev.

    Toward quantifying the increasing role oceanic heat in sea ice loss in the new Arctic

    Get PDF
    Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 96 (2015): 2079–2105, doi:10.1175/BAMS-D-13-00177.1.The loss of Arctic sea ice has emerged as a leading signal of global warming. This, together with acknowledged impacts on other components of the Earth system, has led to the term “the new Arctic.” Global coupled climate models predict that ice loss will continue through the twenty-first century, with implications for governance, economics, security, and global weather. A wide range in model projections reflects the complex, highly coupled interactions between the polar atmosphere, ocean, and cryosphere, including teleconnections to lower latitudes. This paper summarizes our present understanding of how heat reaches the ice base from the original sources—inflows of Atlantic and Pacific Water, river discharge, and summer sensible heat and shortwave radiative fluxes at the ocean/ice surface—and speculates on how such processes may change in the new Arctic. The complexity of the coupled Arctic system, and the logistic and technological challenges of working in the Arctic Ocean, require a coordinated interdisciplinary and international program that will not only improve understanding of this critical component of global climate but will also provide opportunities to develop human resources with the skills required to tackle related problems in complex climate systems. We propose a research strategy with components that include 1) improved mapping of the upper- and middepth Arctic Ocean, 2) enhanced quantification of important process, 3) expanded long-term monitoring at key heat-flux locations, and 4) development of numerical capabilities that focus on parameterization of heat-flux mechanisms and their interactions.2016-06-0
    • …
    corecore