148 research outputs found

    Entanglement of photons in their dual wave-particle nature

    Get PDF
    Wave-particle duality is the most fundamental description of the nature of a quantum object, which behaves like a classical particle or wave depending on the measurement apparatus. On the other hand, entanglement represents nonclassical correlations of composite quantum systems, being also a key resource in quantum information. Despite the very recent observations of wave-particle superposition and entanglement, whether these two fundamental traits of quantum mechanics can emerge simultaneously remains an open issue. Here we introduce and experimentally realize a scheme that deterministically generates entanglement between the wave and particle states of two photons. The elementary tool allowing this achievement is a scalable single-photon setup which can be in principle extended to generate multiphoton wave-particle entanglement. Our study reveals that photons can be entangled in their dual wave-particle behavior and opens the way to potential applications in quantum information protocols exploiting the wave-particle degrees of freedom to encode qubits

    Adaptive two-phase estimation on a photonic integrated device

    Get PDF
    Efficient adaptive multiphase estimation has been demonstrated experimentally on an integrated three-arm interferometer injected by single photons. Bayesian learning and Sequential Monte Carlo approximation have been employed as machine learning tools to achieve this goal

    The nepenthesin insert in the Plasmodium falciparum aspartic protease plasmepsin V is necessary for enzyme function

    Get PDF
    Plasmepsin V (PM V) is a pepsin-like aspartic protease essential for growth of the malarial parasite Plasmodium falciparum. Previous work has shown PM V to be an endoplasmic reticulum-resident protease that processes parasite proteins destined for export into the host cell. Depletion or inhibition of the enzyme is lethal during asexual replication within red blood cells as well as during the formation of sexual stage gametocytes. The structure of the Plasmodium vivax PM V has been characterized by X-ray crystallography, revealing a canonical pepsin fold punctuated by structural features uncommon to secretory aspartic proteases; however, the function of this unique structure is unclear. Here, we used parasite genetics to probe these structural features by attempting to rescue lethal PM V depletion with various mutant enzymes. We found an unusual nepenthesin 1-type insert in the PM V gene to be essential for parasite growth and PM V activity. Mutagenesis of the nepenthesin insert suggests that both its amino acid sequence and one of the two disulfide bonds that undergird its structure are required for the insert\u27s role in PM V function. Furthermore, molecular dynamics simulations paired with Markov state modeling suggest that mutations to the nepenthesin insert may allosterically affect PM V catalysis through multiple mechanisms. Taken together, these data provide further insights into the structure of the P. falciparum PM V protease

    Single-photon Calibration of an Integrated Multiarm Interferometer via Neural Netowrks

    Get PDF
    Technological quantum sensors requires the development of a calibration procedure that is self-consistent and easily adaptable to different scenarios. Neural networks provide a handy solution in particular when dealing with large systems operating in a noisy environment

    Enzymatic and structural characterization of HAD5, an essential phosphomannomutase of malaria-causing parasites

    Get PDF
    The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target

    Nonlocality activation in a photonic quantum network

    Full text link
    Bell nonlocality refers to correlations between two distant, entangled particles that challenge classical notions of local causality. Beyond its foundational significance, nonlocality is crucial for device-independent technologies like quantum key distribution and randomness generation. Nonlocality quickly deteriorates in the presence of noise, and restoring nonlocal correlations requires additional resources. These often come in the form of many instances of the input state and joint measurements, incurring a significant resource overhead. Here, we experimentally demonstrate that single copies of Bell-local states, incapable of violating any standard Bell inequality, can give rise to nonlocality after being embedded into a quantum network of multiple parties. We subject the initial entangled state to a quantum channel that broadcasts part of the state to two independent receivers and certify the nonlocality in the resulting network by violating a tailored Bell-like inequality. We obtain these results without making any assumptions about the prepared states, the quantum channel, or the validity of quantum theory. Our findings have fundamental implications for nonlocality and enable the practical use of nonlocal correlations in real-world applications, even in scenarios dominated by noise.Comment: Main text and Supplementary Information. Comments welcom

    Uso de hipoclorito de sódio na superação da dormência de sementes de espécies forrageiras.

    Get PDF
    O objetivo do trabalho foi testar o uso de hipoclorito de sódio na germinação de sementes das espécies Urochloa ruziziensis cv Integra, híbrido interespecífico de Paspalum guenoarum x Paspalum plicatulum e Paspalum notatum cv Pensacola.Ana Cristina Mazzocato, editora técnica

    Controle de capim-annoni pelo herbicida glyphosate.

    Get PDF
    O presente trabalho teve o objetivo de investigar a ausência de controle pelo glyphosate em biótipo de capim-annoni

    Daylight entanglement-based quantum key distribution with a quantum dot source

    Get PDF
    Entanglement-based quantum key distribution can enable secure communication in trusted node-free networks and over long distances. Although implementations exist both in fiber and in free space, the latter approach is often considered challenging due to environmental factors. Here, we implement a quantum communication protocol during daytime for the first time using a quantum dot source. This technology presents advantages in terms of narrower spectral bandwidth-beneficial for filtering out sunlight-and negligible multiphoton emission at peak brightness. We demonstrate continuous operation over the course of three days, across an urban 270 m-long free-space optical link, under different light and weather conditions
    corecore