30 research outputs found

    Gamma interferon-dependent clearance of cytomegalovirus infection in salivary glands

    Get PDF
    Cytomegalovirus (CMV), similar to other members of the Herpesviridae family, can establish both persistent and latent infections. Each of the CMVs that are found in many animal species replicates in the salivary gland, and oral secretion represents a source of horizontal transmission. Locally restricted replication characterizes the immunocompetent individual, whereas in the immunocompromised host, protean disease manifestations occur due to virus dissemination. The virus is cleared by immune surveillance, and CD8+ T lymphocytes play a major role. Remarkably, certain cell types of salivary gland tissues are exempt from CD8+ T-lymphocyte control of murine CMV infection and require the activity of CD4+ T lymphocytes. The results presented here suggest that this activity is a function of Th1 cells. Neutralization of endogenous gamma interferon abrogated the antiviral activity of Th1 cells but not that of CD8+ T lymphocytes in other tissues. Neutralization of endogenous gamma interferon did not interfere with the induction of the cellular and humoral immune response but acted during the effector phase. Recombinant gamma interferon could not replace the function of Th1 cells in vivo and had limited direct antiviral activity in vitro. The results therefore suggest that gamma interferon represents one, but not the only, essential factor involved in salivary gland clearance, establishment of CMV latency, and, eventually, the control of horizontal transmission

    Antibodies Are Not Essential for the Resolution of Primary Cytomegalovirus Infection but Limit Dissemination of Recurrent Virus

    Get PDF
    Virus shedding from the epithelial cells of the serous acini of salivary glands is a major source for the horizontal transmission of cytomegalovirus. These cells are, different to other tissues, exempt from CD8 T lymphocyte control. CD4 T lymphocytes are essential to terminate the productive infection. Here, we prove that T-B cooperation and the production of antibodies are not required for this process. For the infection with murine cytomegalovirus, mutant mice were used which do not produce antibodies because of a disrupted membrane exon of the immunoglobulin # chain gene. Also, in these mice the virus clearance from salivary glands is a function of CD4 T lymphocytes. However, these mice clear the virus and establish viral latency with a kinetics that is distinguishable from normal mice. Reactivation from virus latency is the only stage at which the absence of antibodies alters the phenotype of infection. In immunoglobulindeficient mice, virus recurrence results in higher virus titers. The adoptive serum transfer proved that antibody is the limited factor that prevents virus dissemination in the immunodeficient hos

    Late phase inhibition of murine cytomegalovirus replication by synergistic action of interferon-gamma and tumour necrosis factor

    Get PDF
    We have shown previously that the antiviral function of CD4+ T lymphocytes against murine cytomegalovirus (MCMV) is associated with the release of interferon- (IFN-). We now demonstrate that IFN- and tumour necrosis factor alpha (TNF-) display synergism in their antiviral activity. As little as 2 ng/ml of IFN- and TNF- reduced the virus yield by about three orders of magnitude. There was no effect on immediate early (IE) and early (E) gene expression as far as the candidate genes IE1, E1 and those encoding the major DNA-binding protein and the DNA polymerase were concerned. Late gene transcription, assayed by the candidate genes encoding glycoprotein B and the MCMV homologue of ICP 18.5, was blocked and MCMV DNA replication was found to be reduced but not halted. The most prominent finding of the cytokine effect, seen by electron microscopy, was an alteration of nucleocapsid formation. Altogether, the synergism is multifaceted and acts at more than one stage during viral morphogenesis. Because the cytokines clearly do not act at an early stage of infection we conclude that the mode of cytokine activity differs between alpha- and betaherpesviruses

    Participation of endogenous tumour necrosis factor α in host resistance to cytomegalovirus infection

    Get PDF
    Interferon gamma (IFN) represents an essential cytokine involved in murine cytomegalovirus (MCMV) clearance from the salivary gland and the control of horizontal transmission. Because IFN cannot be responsible for all cytokine effects during recovery from MCMV infection we have now tested the potential participation of tumour necrosis factor alpha (TNF) in the antiviral defence. Neutralization of endogenous TNF abolished the antiviral activity of CD4 T cells in immunocompetent as well as in CD8 subset-deficient mice. These data suggest that the antiviral effect of the CD4 subset requires the presence of at least two cytokines, namely IFN and TNF. Depletion of endogenous TNF in adoptive cell transfer recipients diminished the antiviral function of CD8 T lymphocytes suggesting that TNF also participates in CD8 T cell effector functions. Furthermore, endogenous cytokines were found to be required for survival after infection with lethal doses of MCMV, whereas immunotherapy with recombinant TNF and IFN could not limit virus replication in vivo. The results suggest that, similar to IFN, TNF is an integral part of the protective mechanisms involved in cytomegalovirus clearance

    NKG2D-dependent anti-tumor effects of chemotherapy and radiotherapy against glioblastoma

    Get PDF
    PURPOSE NKG2D is a potent activating immune cell receptor and glioma cells express the cognate ligands (NKG2DL). These ligands are inducible by cellular stress and temozolomide (TMZ) or irradiation (IR), the standard treatment of glioblastoma, could affect their expression. However, a role of NKG2DL for the efficacy of TMZ and IR has never been addressed. EXPERIMENTAL DESIGN We assessed the effect of TMZ and IR on NKG2DL in vitro and in vivo in a variety of murine and human glioblastoma models including glioma-initiating cells and a cohort of paired glioblastoma samples from patients before and after therapy. Functional effects were studied with immune cell assays. The relevance of the NKG2D system for the efficacy of TMZ and IR was assessed in vivo in syngeneic orthotopic glioblastoma models with blocking antibodies and NKG2D knockout mice. RESULTS TMZ or IR induced NKG2DL in vitro and in vivo in all glioblastoma models and glioblastoma patient samples had increased levels of NKG2DL after therapy with TMZ and IR. This enhanced the immunogenicity of glioma cells in a NGK2D-dependent manner, was independent from cytotoxic or growth inhibitory effects, attenuated by O6-methylguanine-DNA-methyltransferase (MGMT) and required the DNA damage response. The survival benefit afforded by TMZ or IR relied on an intact NKG2D system and was decreased upon inhibition of the NKG2D pathway. CONCLUSIONS The immune system may influence the activity of convential cancer treatments with particular importance of the NKG2D pathway in glioblastoma. Our data provide a rationale to combine NKG2D-based immunotherapies with TMZ and IR

    NK cell activation through the NKG2D ligand MULT-1 is selectively prevented by the glycoprotein encoded by mouse cytomegalovirus gene m145

    Get PDF
    The NK cell–activating receptor NKG2D interacts with three different cellular ligands, all of which are regulated by mouse cytomegalovirus (MCMV). We set out to define the viral gene product regulating murine UL16-binding protein-like transcript (MULT)-1, a newly described NKG2D ligand. We show that MCMV infection strongly induces MULT-1 gene expression, but surface expression of this glycoprotein is nevertheless completely abolished by the virus. Screening a panel of MCMV deletion mutants defined the gene m145 as the viral regulator of MULT-1. The MCMV m145-encoded glycoprotein turned out to be necessary and sufficient to regulate MULT-1 by preventing plasma membrane residence of MULT-1. The importance of MULT-1 in NK cell regulation in vivo was confirmed by the attenuating effect of the m145 deletion that was lifted after NK cell depletion. Our findings underline the significance of escaping MULT-1/NKG2D signaling for viral survival and maintenance

    Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control

    No full text
    Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell)-RAE-1 (target cell)-dependent manner; but in T cell-deficient mice, NK cells only delay but do not prevent the development of PyV-induced tumors. In this article, we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that downregulate RAE-1. These factors include the proinflammatory cytokines IL-1alpha, IL-1beta, IL-33, and TNF. Each of these cytokines downregulates RAE-1 expression and susceptibility to NK cell-mediated cytotoxicity. CD11b(+)F4/80(+) macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1beta and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors

    The Intraepithelial T Cell Response to NKG2D-Ligands Links Lymphoid Stress Surveillance to Atopy

    Get PDF
    Epithelial cells respond to physico-chemical damage with up-regulation of major histocompatbility complex–like ligands that can activate the cytolytic potential of neighboring intraepithelial T cells by binding the activating receptor, NKG2D. The systemic implications of this lymphoid stress-surveillance response, however, are unknown. We found that antigens encountered at the same time as cutaneous epithelial stress induced strong primary and secondary systemic, T helper 2 (T(H)2)–associated atopic responses in mice. These responses required NKG2D-dependent communication between dysregulated epithelial cells and tissue-associated lymphoid cells. These data are germane to uncertainty over the afferent induction of T(H)2 responses and provide a molecular framework for considering atopy as an important component of the response to tissue damage and carcinogenesis
    corecore