121 research outputs found

    Liposomes as a Putative Tool to Investigate NAADP Signaling in Vasculogenesis

    Get PDF
    none8noNicotinic acid adenine dinucleotide phosphate (NAADP) is the newest discovered intracellular second messengers, which is able to release Ca(2+) stored within endolysosomal (EL) vesicles. NAADP-induced Ca(2+) signals mediate a growing number of cellular functions, ranging from proliferation to muscle contraction and differentiation. Recently, NAADP has recently been shown to regulate angiogenesis by promoting endothelial cell growth. It is, however, still unknown whether NAADP stimulates proliferation also in endothelial progenitor cells, which are mobilized in circulation after an ischemic insult to induce tissue revascularization. Herein, we described a novel approach to prepare NAADP-containing liposomes, which are highly cell membrane permeable and are therefore amenable for stimulating cell activity. Accordingly, NAADP-containing liposomes evoked an increase in intracellular Ca(2+) concentration, which was inhibited by NED-19, a selective inhibitor of NAADP-induced Ca(2+) release. Furthermore, NAADP-containing liposomes promoted EPC proliferation, a process which was inhibited by NED-19 and BAPTA, a membrane permeable intracellular Ca(2+) buffer. Therefore, NAADP-containing liposomes stand out as a promising tool to promote revascularization of hypoxic/ischemic tissues by favoring EPC proliferation. J. Cell. Biochem. 9999: 1-8, 2017. © 2017 Wiley Periodicals, Inc.openDi Nezza, Francesca; Zuccolo, Estella; Poletto, Valentina; Rosti, Vittorio; De Luca, Antonio; Moccia, Francesco; Guerra, Germano; Ambrosone, LuigiDi Nezza, Francesca; Zuccolo, Estella; Poletto, Valentina; Rosti, Vittorio; De Luca, Antonio; Moccia, Francesco; Guerra, Germano; Ambrosone, Luig

    Evidence that Prefibrotic Myelofibrosis Is Aligned along a Clinical and Biological Continuum Featuring Primary Myelofibrosis

    Get PDF
    PURPOSE: In the WHO diagnostic classification, prefibrotic myelofibrosis (pre-MF) is included in the category of primary myelofibrosis (PMF). However, strong evidence for this position is lacking. PATIENTS AND METHODS: We investigated whether pre-MF may be aligned along a clinical and biological continuum in 683 consecutive patients who received a WHO diagnosis of PMF. RESULTS: As compared with PMF-fibrotic type, pre-MF (132 cases) showed female dominance, younger age, higher hemoglobin, higher platelet count, lower white blood cell count, smaller spleen index and higher incidence of splanchnic vein thrombosis. Female to male ratio and hemoglobin steadily decreased, while age increased from pre-MF to PMF- fibrotic type with early and to advanced bone marrow (BM) fibrosis. Likely, circulating CD34+ cells, LDH levels, and frequency of chromosomal abnormalities increased, while CXCR4 expression on CD34+ cells and serum cholesterol decreased along the continuum of BM fibrosis. Median survival of the entire cohort of PMF cases was 21 years. Ninety-eight, eighty-one and fifty-six percent of patients with pre-MF, PMF-fibrotic type with early and with advanced BM fibrosis, respectively, were alive at 10 years from diagnosis. CONCLUSION: Pre-MF is a presentation mode of PMF with a very indolent phenotype. The major consequences of this contention is a new clinical vision of PMF, and the need to improve prognosis prediction of the disease

    VEGF-induced intracellular Ca2+ oscillations are down-regulated and do not stimulate angiogenesis in breast cancer-derived endothelial colony forming cells.

    Get PDF
    Endothelial colony forming cells (ECFCs) represent a population of truly endothelial precursors that promote the angiogenic switch in solid tumors, such as breast cancer (BC). The intracellular Ca2+ toolkit, which drives the pro-angiogenic response to VEGF, is remodelled in tumor-associated ECFCs such that they are seemingly insensitive to this growth factor. This feature could underlie the relative failure of anti-VEGF therapies in cancer patients. Herein, we investigated whether and how VEGF uses Ca2+ signalling to control angiogenesis in BC-derived ECFCs (BCECFCs). Although VEGFR-2 was normally expressed, VEGF failed to induce proliferation and in vitro tubulogenesis in BC-ECFCs. Likewise, VEGF did not trigger robust Ca2+ oscillations in these cells. Similar to normal cells, VEGF-induced intracellular Ca2+ oscillations were triggered by inositol-1,4,5-trisphosphate-dependent Ca2+ release from the endoplasmic reticulum (ER) and maintained by store-operated Ca2+ entry (SOCE). However, InsP3-dependent Ca2+ release was significantly lower in BC-ECFCs due to the down-regulation of ER Ca2+ levels, while there was no remarkable difference in the amplitude, pharmacological profile and molecular composition of SOCE. Thus, the attenuation of the pro-angiogenic Ca2+ response to VEGF was seemingly due to the reduction in ER Ca2+ concentration, which prevents VEGF from triggering robust intracellular Ca2+ oscillations. However, the pharmacological inhibition of SOCE prevented BC-ECFC proliferation and in vitro tubulogenesis. These findings demonstrate for the first time that BC-ECFCs are insensitive to VEGF, which might explain at cellular and molecular levels the failure of anti-VEGF therapies in BC patients, and hint at SOCE as a novel molecular target for this disease

    Phenotypic and functional characterization of endothelial progenitor cells isolated from peripheral blood of renal cell carcinoma patients

    Get PDF
    Endothelial progenitor cells (EPCs) are mobilized from either bone marrow or arterial walls to restore blood perfusion to ischemic organs and establish the vascular network within growing tumors [1]. The Ca2+ machinery plays a key role in EPC activation and might serve a molecular target for novel therapies of highly angiogenic tumors, such as renal cell carcinoma (RCC) [1]. The Ca2+ toolkit is remodelled in EPCs isolated from RCC patients (RCC-EPCs) as respect to healthy donors [2]. The present study was undertaken to evaluate for the first time the functional properties of EPCs isolated from tumor patients by focusing on RCC-EPCs. We extended our analysis at microscopic level by monitoring the sub-cellular structure of RCC-EPCs relative to their Ca2+ signalling fingerprint. Our results showed a striking functional and ultrastructural difference between RCC-EPCs and their normal counterparts, which might be the basis for designing novel, more specific anti-angiogenic treatments

    Pola Asuh Sebagai Prediktor Kontrol Diri

    Get PDF
    Each parents have their own way to raise their chidren, which is affecting on how each individual’s self control differs. The present research adresses this central assumption to know the correlation between parenting and individual’s self-control. There are 108 participants in this research, they are college students at Faculty of Psychology, Muhammadiyah University of Surakarta. The sampling technique used in this research is disproportional stratified random sampling. We used quantitative method with help of self-control scale dan parenting-perception scale as measuring tools. The collected data was analized by product moment correlation method with SPSS 16 for windows. Based on the result of the analized data, it shows 0,446 correlation coefficient value with 0,000 sig. (p) value, which means there is a very significant positive correlation between parenting and self-control. As for parenting’s contribution on self-control, determination coefficient’s value shows 19,9%. It means that there are 80,1% other factors which predisposing individual’s self-control

    Ultrastructural and functional differences between normal and tumor endothelial progenitor cells

    Get PDF
    Endothelial progenitor cells (EPCs) may be released from bone marrow to sustain the angiogenic switch that promotes tumor growth and metastatization of several solid cancers (Moccia et al., 2014). It has long been thought that tumor endothelium represents a rather stable structure, devoid of the genetic heterogeneity featuring neoplastic cells; however, more recent studies showed that tumor endothelial cells (TECs) present with an altered gene expression profile that bestows massive morphological and functional differences on them as compared to normal cells (Aird, 2012). Similarly, circulating EPCs isolated from individuals suffering from metastatic renal cellular carcinoma (mRCC) undergo a significant remodelling of their Ca2+ machinery, which is a master regulator of both angiogenesis and vasculogenesis. The present study clearly indicate that EPCs isolated from RCC (RCC-EPCs) and breast carcinoma (BC-EPCs) patients display ultrastructural and functional differences as compared to normal cells (N-EPCs)

    Phenotypic and functional characterization of endothelial progenitor cells isolated from peripheral blood of renal cell carcinoma patients

    Get PDF
    Endothelial progenitor cells (EPCs) are mobilized from either bone marrow or arterial walls to restore blood perfusion to ischemic organs and establish the vascular network within growing tumors [1]. The Ca2+ machinery plays a key role in EPC activation and might serve a molecular target for novel therapies of highly angiogenic tumors, such as renal cell carcinoma (RCC) [1]. The Ca2+ toolkit is remodelled in EPCs isolated from RCC patients (RCC-EPCs) as respect to healthy donors [2]. The present study was undertaken to evaluate for the first time the functional properties of EPCs isolated from tumor patients by focusing on RCC-EPCs. We extended our analysis at microscopic level by monitoring the sub-cellular structure of RCC-EPCs relative to their Ca2+ signalling fingerprint. Our results showed a striking functional and ultrastructural difference between RCC-EPCs and their normal counterparts, which might be the basis for designing novel, more specific anti-angiogenic treatments
    • …
    corecore