22 research outputs found

    The receptor kinase FERONIA regulates phosphatidylserine localization at the cell surface to modulate ROP signaling

    Full text link
    Cells maintain a constant dialog between the extracellular matrix and their plasma membrane to fine tune signal transduction processes. We found that the receptor kinase FERONIA (FER), which is a proposed cell wall sensor, modulates phosphatidylserine plasma membrane accumulation and nano-organization, a key regulator of Rho GTPase signaling in Arabidopsis. We demonstrate that FER is required for both Rho-of-Plant 6 (ROP6) nano-partitioning at the membrane and downstream production of reactive oxygen species upon hyperosmotic stimulus. Genetic and pharmacological rescue experiments indicate that phosphatidylserine is required for a subset of, but not all, FER functions. Furthermore, application of FER ligand shows that its signaling controls both phosphatidylserine membrane localization and nanodomains formation, which, in turn, tunes ROP6 signaling. Together, we propose that a cell wall-sensing pathway controls via the regulation of membrane phospholipid content, the nano-organization of the plasma membrane, which is an essential cell acclimation to environmental perturbations

    Molecular basis of the nitrate / cytokinin dependent long distance signaling in Arabidopsis thaliana

    No full text
    Les plantes sont des organismes sessiles se développant dans un environnement hétérogène et fluctuant. La capacité d'acquisition des nutriments par le système racinaire est donc un caractère important pour leur croissance et leur développement.L'azote (N), notamment sous forme nitrate (NO3-), fait partie de ces éléments qui sont limitant pour la croissance des plantes mais aussi très mobiles dans le sol donc fréquemment distribués de façon hétérogène. Les plantes s'adaptent à cette contrainte en modulant le développement racinaire ainsi que la capacité de transport de ce nutriment dans les différentes parties du système racinaire en fonction de la disponibilité en NO3- et du besoin en azote (N) de la plante entière. Cette adaptation repose donc sur la combinaison de deux voies de signalisation, i) une signalisation locale dépendante de la disponibilité en NO3- dans le milieu extérieur ii) une signalisation longue distance (ou systémique) racines-feuilles-racines relative au besoin en N de la plante entière.Toutefois, les bases moléculaires de la signalisation longue distance comme les mécanismes de régulation qui y sont associés ne sont pas totalement connus. Ils reposent sur l'intégration au niveau des parties aériennes de signaux d'origine racinaire, provenant des racines exposées au NO3- mais aussi de celles qui en sont privées. Les parties aériennes jouent alors un rôle majeur dans la modulation de la physiologie et du développement racinaire en condition de disponibilité hétérogène en NO3-. Des études précédentes ont montré que la biosynthèse de cytokinines est essentielle pour la mise en place de cette réponse adaptative. De plus, il est connu qu'après un apport de NO3-, la biosynthèse de cette hormone dans les racines puis son accumulation dans les parties aériennes est augmentée. Dans ce contexte, nous avons émis l'hypothèse que les cytokinines pourraient correspondre à un messager racines/feuilles important pour la signalisation systémique NO3--dépendante.L'objectif de mon projet de thèse consistait à comprendre comment les parties aériennes contrôlent l'acquisition racinaire du NO3- en condition de disponibilité hétérogène en NO3-. Pour reproduire cette condition en laboratoire, le système de 'split-root', permettant de séparer le système racinaire en deux parties isolées pouvant être traitées différemment, a été utilisé pour exposer les plantes à différentes conditions de disponibilité en NO3-. Dans ces différentes conditions, les réponses moléculaires, métaboliques et physiologiques ont été caractérisées chez des plantes sauvages d'Arabidopsis et comparées à celles de mutants affectés dans la biosynthèse, le transport acropetal ou encore dans la perception des cytokinines. La combinaison de ces différentes approches m'a ainsi permis de démontrer que les cytokinines, et plus précisément les trans-zéatines, sont effectivement un messager racines-feuilles crucial pour la mise en place des réponses de la racine à une disponibilité hétérogène en NO3-. De plus, j'ai montré que l'apport hétérogène en NO3- comparé à l'apport homogène entraîne une importante reprogrammation de l'expression génique dans les parties aériennes qui est largement dépendante de ce transport de trans-zéatines vers les feuilles. Enfin, l'intégration de ces données transcriptomiques au sein de réseaux géniques a permis d'identifier des gènes candidats intéressants comme acteurs possibles de la signalisation feuilles-racines.Plants are sessile organisms growing in a heterogeneous and fluctuating environment. Thus, foraging for nutrients is an important trait for plant growth and development. Nitrogen (N), especially as nitrate (NO3-) form, is one limiting element for plant growth but is also highly mobile in the soil leading to frequent heterogeneity distribution. Plants are managing this constraint through the regulation of root development and NO3- uptake in the different parts of the root system according to the spatial NO3- availability and the N needs of the whole plant. This adaptation relies on a dual signaling pathway involving i) a local signaling related to external NO3- supply and ii) a root-shoot-root long-distance (systemic) signaling related to the plant N needs..However, the molecular basis of the long-distance signaling as well as the regulatory mechanisms associated with, are not fully understood. They rely on the integration at the shoot level of signals originating from both NO3--supplied and N-deprived root parts. Therefore, the shoots have a key role for an efficient adaptation to heterogeneous NO3- environment through the adjustment of root physiology and development. Previously, cytokinin biosynthesis has been shown to be essential for both molecular and morphological root responses to NO3- heterogeneous environment. Moreover, it is known that upon NO3- supply, de novo biosynthesis of this hormone in the roots is increased along with its accumulation in the shoots. In this context, we hypothesized that cytokinins could correspond to an important root to shoot signal involved in NO3--dependent systemic signaling.The main objective of my PhD project was to decipher and understand how the shoots control root NO3- acquisition in response to spatial NO3- heterogeneity. To do so, we used the 'split-root' system, in which physically isolated roots of a same plant are challenged with different NO3- environments. In this framework, we characterized physiological, metabolic and molecular responses of Arabidopsis wild-type plants that we compared to responses of mutants impaired in cytokinin biosynthesis, acropetal transport or perception. The combination of these different approaches allowed me to demonstrate that cytokinins, and especially trans-zeatin species are indeed a root to shoot messenger that is crucial for root responses to spatial NO3- heterogeneity. Moreover, I have shown that NO3- heterogeneous supply compared to homogeneous supply triggers a substantial reprogramming of gene expression in aerial part, which largely depends on this trans-zeatin transport toward the shoots. Finally, the integration of these transcriptomic modifications into gene networks led to the identification of interesting candidate genes to characterize the shoot-to-root signaling

    Mécanismes moléculaires de la signalisation longue distance dépendante de l’interaction nitrate/cytokinine, chez Arabidopsis thaliana

    No full text
    Plants are sessile organisms growing in a heterogeneous and fluctuating environment. Thus, foraging for nutrients is an important trait for plant growth and development. Nitrogen (N), especially as nitrate (NO3-) form, is one limiting element for plant growth but is also highly mobile in the soil leading to frequent heterogeneity distribution. Plants are managing this constraint through the regulation of root development and NO3- uptake in the different parts of the root system according to the spatial NO3- availability and the N needs of the whole plant. This adaptation relies on a dual signaling pathway involving i) a local signaling related to external NO3- supply and ii) a root-shoot-root long-distance (systemic) signaling related to the plant N needs.. However, the molecular basis of the long-distance signaling as well as the regulatory mechanisms associated with, are not fully understood. They rely on the integration at the shoot level of signals originating from both NO3--supplied and N-deprived root parts. Therefore, the shoots have a key role for an efficient adaptation to heterogeneous NO3- environment through the adjustment of root physiology and development. Previously, cytokinin biosynthesis has been shown to be essential for both molecular and morphological root responses to NO3- heterogeneous environment. Moreover, it is known that upon NO3- supply, de novo biosynthesis of this hormone in the roots is increased along with its accumulation in the shoots. In this context, we hypothesized that cytokinins could correspond to an important root to shoot signal involved in NO3--dependent systemic signaling. The main objective of my PhD project was to decipher and understand how the shoots control root NO3- acquisition in response to spatial NO3- heterogeneity. To do so, we used the 'split-root' system, in which physically isolated roots of a same plant are challenged with different NO3- environments. In this framework, we characterized physiological, metabolic and molecular responses of Arabidopsis wild-type plants that we compared to responses of mutants impaired in cytokinin biosynthesis, acropetal transport or perception. The combination of these different approaches allowed me to demonstrate that cytokinins, and especially trans-zeatin species are indeed a root to shoot messenger that is crucial for root responses to spatial NO3- heterogeneity. Moreover, I have shown that NO3- heterogeneous supply compared to homogeneous supply triggers a substantial reprogramming of gene expression in aerial part, which largely depends on this trans-zeatin transport toward the shoots. Finally, the integration of these transcriptomic modifications into gene networks led to the identification of interesting candidate genes to characterize the shoot-to-root signaling.Les plantes sont des organismes sessiles se développant dans un environnement hétérogène et fluctuant. La capacité d'acquisition des nutriments par le système racinaire est donc un caractère important pour leur croissance et leur développement. L'azote (N), notamment sous forme nitrate (NO3-), fait partie de ces éléments qui sont limitant pour la croissance des plantes mais aussi très mobiles dans le sol donc fréquemment distribués de façon hétérogène. Les plantes s'adaptent à cette contrainte en modulant le développement racinaire ainsi que la capacité de transport de ce nutriment dans les différentes parties du système racinaire en fonction de la disponibilité en NO3- et du besoin en azote (N) de la plante entière. Cette adaptation repose donc sur la combinaison de deux voies de signalisation, i) une signalisation locale dépendante de la disponibilité en NO3- dans le milieu extérieur ii) une signalisation longue distance (ou systémique) racines-feuilles-racines relative au besoin en N de la plante entière. Toutefois, les bases moléculaires de la signalisation longue distance comme les mécanismes de régulation qui y sont associés ne sont pas totalement connus. Ils reposent sur l'intégration au niveau des parties aériennes de signaux d'origine racinaire, provenant des racines exposées au NO3- mais aussi de celles qui en sont privées. Les parties aériennes jouent alors un rôle majeur dans la modulation de la physiologie et du développement racinaire en condition de disponibilité hétérogène en NO3-. Des études précédentes ont montré que la biosynthèse de cytokinines est essentielle pour la mise en place de cette réponse adaptative. De plus, il est connu qu'après un apport de NO3-, la biosynthèse de cette hormone dans les racines puis son accumulation dans les parties aériennes est augmentée. Dans ce contexte, nous avons émis l'hypothèse que les cytokinines pourraient correspondre à un messager racines/feuilles important pour la signalisation systémique NO3--dépendante. L'objectif de mon projet de thèse consistait à comprendre comment les parties aériennes contrôlent l'acquisition racinaire du NO3- en condition de disponibilité hétérogène en NO3-. Pour reproduire cette condition en laboratoire, le système de 'split-root', permettant de séparer le système racinaire en deux parties isolées pouvant être traitées différemment, a été utilisé pour exposer les plantes à différentes conditions de disponibilité en NO3-. Dans ces différentes conditions, les réponses moléculaires, métaboliques et physiologiques ont été caractérisées chez des plantes sauvages d'Arabidopsis et comparées à celles de mutants affectés dans la biosynthèse, le transport acropetal ou encore dans la perception des cytokinines. La combinaison de ces différentes approches m'a ainsi permis de démontrer que les cytokinines, et plus précisément les trans-zéatines, sont effectivement un messager racines-feuilles crucial pour la mise en place des réponses de la racine à une disponibilité hétérogène en NO3-. De plus, j'ai montré que l'apport hétérogène en NO3- comparé à l'apport homogène entraîne une importante reprogrammation de l'expression génique dans les parties aériennes qui est largement dépendante de ce transport de trans-zéatines vers les feuilles. Enfin, l'intégration de ces données transcriptomiques au sein de réseaux géniques a permis d'identifier des gènes candidats intéressants comme acteurs possibles de la signalisation feuilles-racine

    Arabidopsis vascular complexity and connectivity controls PIN-FORMED1 dynamics and lateral vein patterning during embryogenesis

    No full text
    International audienceArabidopsis VASCULATURE COMPLEXITY AND CONNECTIVITY (VCC) is a plant-specific transmembrane protein that controls the development of veins in cotyledons. Here we show that the expression and localization of the auxin efflux carrier PIN-FORMED1 (PIN1) is altered in vcc developing cotyledons and that overexpression of PIN1-GFP partially rescues vascular defects of vcc in a dosage-dependent manner. Genetic analyses suggest that VCC and PINOID (PID), a kinase that regulates PIN1 polarity, are both required for PIN1-mediated control of vasculature development. VCC expression is upregulated by auxin, likely as part of a positive feedback loop for the progression of vascular development. VCC and PIN1 localized to the plasma membrane in pre-procambial cells but are actively redirected to vacuoles in procambial cells for degradation. In the vcc mutant, PIN1 failed to properly polarize in pre-procambial cells during the formation of basal strands and instead, it is prematurely degraded in vacuoles. VCC plays a role in localization and stability of PIN1, which is critical for the transition of pre-procambial into procambial cells involved in the formation of basal lateral strands in embryonic cotyledons

    Root Responses to Heterogeneous Nitrate Availability are Mediated by trans-Zeatin in Arabidopsis Shoots

    Get PDF
    preprint déposé dans bioRxivPlants are subjected to variable nitrogen (N) availability including frequent spatial nitrate (NO3-) heterogeneity in soil. Thus, plants constantly adapt their genome expression and root physiology in order to optimize N acquisition from this heterogeneous source. These adaptations rely on a complex and long distance root-shoot-root signaling network that is still largely unknown. Here, we used a combination of reverse genetics, transcriptomic analysis, NO3- uptake experiments and hormone profiling under conditions of homogeneous or heterogeneous NO3- availability to characterize the systemic signaling involved. We demonstrate the important role of the trans-zeatin form of cytokinin (CK) in shoots, in particular using a mutant altered for ABCG14-mediated trans-zeatin-translocation from the root to theshoot, in mediating: (i) rapid long distance N-demand signaling and (ii) long term functional adaptations to heterogeneous NO3- supply, including changes in NO3- transport capacity and root growthmodifications. We also provide insights into the potential CK-dependent and independent shoot-to-root signals involved in root adaptation to heterogeneous N availability

    Imagerie calcique plante entière : les avantages de l’utilisation de l’aequorine (bioluminescence) et les contraintes techniques

    No full text
    Imagerie calcique plante entière : les avantages de l’utilisation de l’aequorine (bioluminescence) et les contraintes techniques. 6 èmes Journées Scientifiques et Techniques du Résau des Microscopistes de l'INR

    Nutrient and salt stress sensing by roots induces long distance calcium signalling in leaves

    No full text
    Nutrient and salt stress sensing by roots induces long distance calcium signalling in leaves. International Symposium on Plant Signaling and Behavio

    Interaction between systemic nitrogen signaling and hormones, in arabidopsis

    No full text
    Rapid adjustment of plant physiology and development to external fluctuations is critical for sessile organism, giving a singular interest to network signaling controlling these mechanisms. Among many adaptation processes, root plasticity is primordial to optimize nutrient acquisition but relies on a complex network integrating local and systemic (root <‐> shoot) signaling. Indeed, locally, plants invest resource in soil area where nutrients are available and systemically they adjust nutrient acquisition to the whole plant demand. Our main goal is to decipher systemic signaling underlying the perception of nitrate heterogeneous provision, in Arabidopsis. Using the split‐root system, in which physically isolated root systems of the same plant were challenged with different environments, we previously demonstrated that cytokinin biosynthesis constitutes one critical component of root‐shoot‐root communication. By combining the use of cytokinin mutants with hormone measurements, transcriptomic analysis, nitrate uptake assays, and root growth measurements, we show that root to shoot trans ‐zeatin ( t Z) translocation is likely crucial for long distance signaling controlling rapid sentinel gene regulation and long‐term functional acclimation to heterogeneous nitrate supply. Interestingly, shoot transcriptome profiling revealed that glutamate/glutamine metabolism is likely a target of t Z root‐to‐shoot translocation, prompting an interesting hypothesis regarding shoot‐to‐root communication. Finally, this study also highlights t Z‐independent pathways triggered by variation into nitrogen supply
    corecore