27 research outputs found

    Conquering the Cold: Thermal Testing of MMX Rover IDEFIX's Locomotion Subsystem for the Exploration on Phobos

    Get PDF
    The Martian Moon eXploration (MMX) mission, led by the Japan Aerospace Exploration Agency (JAXA), is scheduled for launch in 2024 with the objective of sample-return from the Martian Moon Phobos and additional scientific observations of Deimos. As part of this mission, the MMX rover 'IDEFIX', developed collaboratively by the French Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), will serve as a mobile scout on the surface of Phobos. With its four-wheeled design and a weight of 25 kg, the rover will operate in microgravity and conducting in-situ measurements in areas of scientific interest. The locomotion subsystem (LSS) of the MMX rover, developed, build and qualified by DLR's Robotics and Mechatronics Center, plays a key role in fulfilling the mission objectives. The LSS is designed to accomplish various high-level requirements, including the correct reorientation (so-called uprighting) of the rover after ballistic landing, precise alignment of the solar cells for optimal power generation, and the provision of different driving modes to explore Phobos and interact with its surface. Additionally, the LSS allows for adjusting the rover's ground distance to allow measurements with the Raman spectrometer. To ensure the LSS can withstand the challenging conditions of the MMX mission, particularly the harsh environment during the cruise phase and the expected extremely low temperatures on Phobos, a comprehensive thermal design was developed. The LSS was subsequently subjected to rigorous testing throughout the development phases. The testing involved evaluating the mechanical, electrical and thermal aspects of various subunits, including the complex hold-down and release mechanism (HDRM), as well as conducting full functionality tests of the flight representative LSS during the qualification and acceptance stages. This presentation provides an overview of DLR's approach to thermal testing activities for the LSS during the development phase of the MMX rover. It offers insights into the MMX mission as a whole and presents a detailed examination of the qualification and acceptance thermal tests conducted for the LSS, emphasizing the significance of these tests in ensuring the successful operation of the rover during the mission

    Model Mediated Teleoperation with a Hand-Arm Exoskeleton in Long Time Delays Using Reinforcement Learning

    Get PDF
    Telerobotic systems must adapt to new environmental conditions and deal with high uncertainty caused by long-time delays. As one of the best alternatives to human-level intelligence, Reinforcement Learning (RL) may offer a solution to cope with these issues. This paper proposes to integrate RL with the Model Mediated Teleoperation (MMT) concept. The teleoperator interacts with a simulated virtual environment, which provides instant feedback. Whereas feedback from the real environment is delayed, feedback from the model is instantaneous, leading to high transparency. The MMT is realized in combination with an intelligent system with two layers. The first layer utilizes Dynamic Movement Primitives (DMP) which accounts for certain changes in the avatar environment. And, the second layer addresses the problems caused by uncertainty in the model using RL methods. Augmented reality was also provided to fuse the avatar device and virtual environment models for the teleoperator. Implemented on DLR's Exodex Adam hand-arm haptic exoskeleton, the results show RL methods are able to find different solutions when changes are applied to the object position after the demonstration. The results also show DMPs to be effective at adapting to new conditions where there is no uncertainty involved

    Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets in a Field Operation Scenario

    Get PDF
    In 2021 the Modular Mechatronics Infrastructure (MMI) was introduced as a solution to reduce weight, costs, and development time in robotic lanetary missions. With standardized interfaces and multi-functional elements, this modular approach is planned to be used more often in sustainable exploration activities on the Moon and Mars. The German multi-robot research project “Autonomous Robotic Networks to Help Modern Societies (ARCHES)” has explored this concept with the use of various collaborative robotic assets which have their capabilities extended by the MMI. Different scientific payloads, engineering infrastructure modules, and specific purpose tools can be integrated to and manipulated by a robotic arm and a standardized electromechanical docking-interface. Throughout the MMI’s design and implementation phase the performed preliminary tests confirmed that the different systems of the robotic cooperative team such as the Docking Interface System (DIS), the Power Management System (PMS), and the Data Communication System (DCS) functioned successfully. During the summer of 2022 a Demonstration Mission on Mount Etna (Sicily, Italy) was carried out as part of the ARCHES Project. This field scenario allowed the validation of the robotics systems in an analogue harsh environment and the confirmation of enhanced operations with the application of this modular method. Among the numerous activities performed in this volcanic terrain there are the efficient assembling of the Low Frequency Array (LOFAR) network, the energy-saving and reduced complexity of a detached Laser Induced Breakdown Spectroscopy (LIBS) module, and the uninterrupted powered operation between modules when switching between different power sources. The field data collected during this analogue campaign provided important outcomes for the modular robotics application. Modular and autonomous robots certainly benefit from their versatility, reusability, less complex systems, reduced requirements for space qualification, and lower risks for the mission. These characteristics will ensure that long duration and complex robotic planetary endeavours are not as challenging as they used to be in the past

    CoaxHaptics-3RRR: A Novel Coaxial Spherical Parallel Haptic Device

    Get PDF
    This paper presents a novel coaxial haptic interaction device based on a 3-RRR spherical parallel mechanism with three active degrees of freedom (DoF). The benefit of the presented mechanism is that its dynamic moment of inertia is low, weakly coupled, and little dependent on configuration, while it has high structural stiffness

    Model Mediated Teleoperation with a Hand-Arm Exoskeleton in Long Time Delays Using Reinforcement Learning

    Get PDF
    elerobotic systems must adapt to new environmental conditions and deal with high uncertainty caused by long-time delays. As one of the best alternatives to human-level intelligence, Reinforcement Learning (RL) may offer a solution to cope with these issues. This paper proposes to integrate RL with the Model Mediated Teleoperation (MMT) concept. The teleoperator interacts with a simulated virtual environment, which provides instant feedback. Whereas feedback from the real environment is delayed, feedback from the model is instantaneous, leading to high transparency. The MMT is realized in combination with an intelligent system with two layers. The first layer utilizes Dynamic Movement Primitives (DMP) which accounts for certain changes in the avatar environment. And, the second layer addresses the problems caused by uncertainty in the model using RL methods. Augmented reality was also provided to fuse the avatar device and virtual environment models for the teleoperator. Implemented on DLR's Exodex Adam hand-arm haptic exoskeleton, the results show RL methods are able to find different solutions when changes are applied to the object position after the demonstration. The results also show DMPs to be effective at adapting to new conditions where there is no uncertainty involved

    Design and Implementation of a Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets

    Get PDF
    Traditionally, the robotic systems which aim to explore other celestial bodies include all instruments and tools necessary for the mission. This makes them unique developments. Usually, they are heavy, complex, costly and do not provide any interchangeable parts that could be replaced in the event of permanent failure. However, for future missions, agencies, institutes and commercial companies are developing robotics systems based on the concept of modular robotics. This new strategy becomes critical for planetary exploration because it is able to reduce load, costs and development time. In the German multi robot research project, ‘’Autonomous Robotic Networks to Help Modern Societies (ARCHES)”, led by the German Aerospace Center (DLR), this modern design methodology is followed. Cooperation among robots and modularity are the core of its structure. These characteristics are present in the collaboration between the rovers and the uncrewed aerial vehicle (UAV) during navigation tasks, or when the Lightweight Rover Unit (LRU) interacts with changeable manipulator tools and payload boxes through its robotic arm and its standardized electromechanical interface. Examples of these modules include scientific packages, power supply systems, communication and data acquisition architectures, soil sample storage units, and specific purpose end-effectors. The focus of this work is in the design and implementation of a mechatronics infrastructure (MI) which encompasses the docking interface, the payload modules, and the power and data management electronics board inside each box. These three elements are essential for the extension of the capabilities of the rover and the enhancement of the robotics systems according to the tasks to be performed. This will ensure that robots can cooperate with each other either in scientific missions or in the construction and maintenance of large structures. The MI’s hardware and software developed in this project will be tested and validated in the ARCHES demonstration mission on Mount Etna, Sicily, in Italy between 13th June and 9th July 2022. Finally, it is important to highlight that modularity and standardization were considered at all levels of the infrastructure. From the robotics systems to the internal architecture of each payload module, these concepts can provide versatility and reliability to the cooperative robotic network. This will improve the problem-solving capabilities of robots performing complex tasks in future planetary exploration missions

    Exodex Adam—A Reconfigurable Dexterous Haptic User Interface for the Whole Hand

    Get PDF
    Applications for dexterous robot teleoperation and immersive virtual reality are growing. Haptic user input devices need to allow the user to intuitively command and seamlessly “feel” the environment they work in, whether virtual or a remote site through an avatar. We introduce the DLR Exodex Adam, a reconfigurable, dexterous, whole-hand haptic input device. The device comprises multiple modular, three degrees of freedom (3-DOF) robotic fingers, whose placement on the device can be adjusted to optimize manipulability for different user hand sizes. Additionally, the device is mounted on a 7-DOF robot arm to increase the user’s workspace. Exodex Adam uses a front-facing interface, with robotic fingers coupled to two of the user’s fingertips, the thumb, and two points on the palm. Including the palm, as opposed to only the fingertips as is common in existing devices, enables accurate tracking of the whole hand without additional sensors such as a data glove or motion capture. By providing “whole-hand” interaction with omnidirectional force-feedback at the attachment points, we enable the user to experience the environment with the complete hand instead of only the fingertips, thus realizing deeper immersion. Interaction using Exodex Adam can range from palpation of objects and surfaces to manipulation using both power and precision grasps, all while receiving haptic feedback. This article details the concept and design of the Exodex Adam, as well as use cases where it is deployed with different command modalities. These include mixed-media interaction in a virtual environment, gesture-based telemanipulation, and robotic hand–arm teleoperation using adaptive model-mediated teleoperation. Finally, we share the insights gained during our development process and use case deployments

    Modular Mechatronics Infrastructure for Robotic Planetary Exploration Assets in a Field Operation Scenario

    Get PDF
    In 2021 the Modular Mechatronics Infrastructure (MMI) was introduced as a solution to reduce weight, costs, and development time in robotic planetary missions. With standardized interfaces and multi-functional elements, this modular approach is planned to be used more often in sustainable exploration activities on the Moon and Mars. The German multi-robot research project “Autonomous Robotic Networks to Help Modern Societies (ARCHES)” has explored this concept with the use of various collaborative robotic assets which have their capabilities extended by the MMI. Different scientific payloads, engineering infrastructure modules, and specific purpose tools can be integrated to and manipulated by a robotic arm and a standardized electromechanical docking-interface. Throughout the MMI’s design and implementation phase the performed preliminary tests confirmed that the different systems of the robotic cooperative team such as the Docking Interface System (DIS), the Power Management System (PMS), and the Data Communication System (DCS) functioned successfully. During the summer of 2022 a Demonstration Mission on Mount Etna (Sicily, Italy) was carried out as part of the ARCHES Project. This field scenario allowed the validation of the robotics systems in an analogue harsh environment and the confirmation of enhanced operations with the application of this modular method. Among the numerous activities performed in this volcanic terrain there are the efficient assembling of the Low Frequency Array (LOFAR) network, the energy-saving and reduced complexity of a detached Laser Induced Breakdown Spectroscopy (LIBS) module, and the uninterrupted powered operation between modules when switching between different power sources. The field data collected during this analogue campaign provided important outcomes for the modular robotics application. Modular and autonomous robots certainly benefit from their versatility, reusability, less complex systems, reduced requirements for space qualification, and lower risks for the mission. These characteristics will ensure that long duration and complex robotic planetary endeavours are not as challenging as they used to be in the past

    On Realizing Multi-Robot Command through Extending the Knowledge Driven Teleoperation Approach

    Get PDF
    Future crewed planetary missions will strongly depend on the support of crew-assistance robots for setup and inspection of critical assets, such as return vehicles, before and after crew arrival. To efficiently accomplish a high variety of tasks, we envision the use of a heterogeneous team of robots to be commanded on various levels of autonomy. This work presents an intuitive and versatile command concept for such robot teams using a multi-modal Robot Command Terminal (RCT) on board a crewed vessel. We employ an object-centered prior knowledge management that stores the information on how to deal with objects around the robot. This includes knowledge on detecting, reasoning on, and interacting with the objects. The latter is organized in the form of Action Templates (ATs), which allow for hybrid planning of a task, i.e. reasoning on the symbolic and the geometric level to verify the feasibility and find a suitable parameterization of the involved actions. Furthermore, by also treating the robots as objects, robot-specific skillsets can easily be integrated by embedding the skills in ATs. A Multi-Robot World State Representation (MRWSR) is used to instantiate actual objects and their properties. The decentralized synchronization of the MRWSR of multiple robots supports task execution when communication between all participants cannot be guaranteed. To account for robot-specific perception properties, information is stored independently for each robot, and shared among all participants. This enables continuous robot- and command-specific decision on which information to use to accomplish a task. A Mission Control instance allows to tune the available command possibilities to account for specific users, robots, or scenarios. The operator uses an RCT to command robots based on the object-based knowledge representation, whereas the MRWSR serves as a robot-agnostic interface to the planetary assets. The selection of a robot to be commanded serves as top-level filter for the available commands. A second filter layer is applied by selecting an object instance. These filters reduce the multitude of available commands to an amount that is meaningful and handleable for the operator. Robot-specific direct teleoperation skills are accessible via their respective AT, and can be mapped dynamically to available input devices. Using AT-specific parameters provided by the robot for each input device allows a robot-agnostic usage, as well as different control modes e.g. velocity, model-mediated, or domain-based passivity control based on the current communication characteristics. The concept will be evaluated on board the ISS within the Surface Avatar experiments

    Introduction to Surface Avatar: the First Heterogeneous Robotic Team to be Commanded with Scalable Autonomy from the ISS

    Get PDF
    Robotics is vital to the continued development toward Lunar and Martian exploration, in-situ resource utilization, and surface infrastructure construction. Large-scale extra-terrestrial missions will require teams of robots with different, complementary capabilities, together with a powerful, intuitive user interface for effective commanding. We introduce Surface Avatar, the newest ISS-to-Earth telerobotic experiment series, to be conducted in 2022-2024. Spearheaded by DLR, together with ESA, Surface Avatar builds on expertise on commanding robots with different levels of autonomy from our past telerobotic experiments: Kontur-2, Haptics, Interact, SUPVIS Justin, and Analog-1. A team of four heterogeneous robots in a multi-site analog environment at DLR are at the command of a crew member on the ISS. The team has a humanoid robot for dexterous object handling, construction and maintenance; a rover for long traverses and sample acquisition; a quadrupedal robot for scouting and exploring difficult terrains; and a lander with robotic arm for component delivery and sample stowage. The crew's command terminal is multimodal, with an intuitive graphical user interface, 3-DOF joystick, and 7-DOF input device with force-feedback. The autonomy of any robot can be scaled up and down depending on the task and the astronaut's preference: acting as an avatar of the crew in haptically-coupled telepresence, or receiving task-level commands like an intelligent co-worker. Through crew performing collaborative tasks in exploration and construction scenarios, we hope to gain insight into how to optimally command robots in a future space mission. This paper presents findings from the first preliminary session in June 2022, and discusses the way forward in the planned experiment sessions
    corecore