190 research outputs found

    Transfer Matrix Analysis of the Unidirectional Grating-Assisted Codirectional Coupler

    Get PDF
    The unidirectional grating-assisted codirectional coupler (U-GACC) has recently been proposed. This unique structure permits irreversible coupling between orthogonal waveguide eigenmodes by means of simultaneous modulation of both the real and imaginary parts of the refractive index in the coupling region. Analysis of the U-GACC has until now relied on coupled mode theory, which can be restrictive in its application as a design tool. We analyze the U-GACC by the transfer matrix method, which demonstrates in a simple fashion why the device operates in a unidirectional manner. In addition, we show that for all practical designs, there is a limit to the minimum cross talk between outputs, a phenomenon that has not been previously identified

    Manipulation of extinction features in frequency combs through the usage of graphene

    Get PDF
    Lately, the integration of two-dimensional materials into semiconductor devices has allowed the modification of their effective index by simply applying a modest voltage (between 0 and 3 volts). In this work, we present a device composed of two evanescently coupled silicon microring resonators where both rings have a graphene layer on top. This design is aimed to produce frequency combs with transmission characteristics controlled upon voltage application to the graphene layer. We numerically analyze the device response as a function of the incident wavelength and applied voltage. The results showed a low input intensity (0.6 GW/cm2) needed and a rapid response time (0.1 μs), in comparison to devices controlled by heat injection

    Highly fabrication tolerant InP based polarization beam splitter based on p-i-n structure

    Get PDF
    In this work, a novel highly fabrication tolerant polarization beam splitter (PBS) is presented on an InP platform. To achieve the splitting, we combine the Pockels effect and the plasma dispersion effect in a symmetric 1x2 Mach-Zehnder interferometer (MZI). One p-i-n phase shifter of the MZI is driven in forward bias to exploit the plasma dispersion effect and modify the phase of both the TE and TM mode. The other arm of the MZI is driven in reverse bias to exploit the Pockels effect which affects only the TE mode. By adjusting the voltages of the two phase shifters, a different interference condition can be set for the TE and the TM modes thereby splitting them at the output of the MZI. By adjusting the voltages, the very tight fabrication tolerances known for fully passive PBS are eased. The experimental results show that an extinction ratio better than 15 dB and an on-chip loss of 3.5 dB over the full C-band (1530-1565nm) are achieved

    Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator

    Get PDF
    We present an experimental study and analysis of a travelling wave series push-pull silicon photonic multi-electrode Mach-Zehnder modulator (ME-MZM) and compare its performance with a single-electrode travelling wave Mach-Zehnder modulator (TWMZM). Utilizing the functionality of the ME-MZM structure plus digital-signal-processing, we report: 1) the C-band transmission of 84 Gb/s OOK modulated data below the KP4 forward error correction threshold with 2 Vpp drive voltage over a distance of 2 km; 2) the transmission of a 128 Gb/s optical 4-level pulse amplitude modulated signal over 1 km of fiber; and 3) the generation of a 168 Gb/s PAM-4 signal using two electrical OOK signals. By comparing the transmission system performance measurements for the ME-MZM with measurements performed using a similar series push-pull TWMZM, we show that the ME-MZM provides a clear advantage in achieving higher baud PAM-4 generation and transmission compared to a TWMZM

    Broadband all-silicon hybrid plasmonic TM-pass polarizer using bend waveguides

    Get PDF
    A complementary–metal–oxide semiconductor (CMOS) compatible all-silicon TM-pass polarizer using plasmonic bends is proposed. To simplify the fabrication and be compatible with the CMOS process, we employ only two materials: silicon and silicon dioxide. Highly doped silicon is used to support the plasmons. We obtain an extinction ratio and an insertion loss of 45.4 and 1.7 dB, respectively, at 1550 nm and a maximum extinction ratio of 58 dB. This is the highest reported extinction ratio for a TM-pass polarizer to the best of our knowledge. Furthermore, we achieved >20 dB of extinction ratio and <2 dB of insertion loss over 72 nm bandwidth for a device footprint <8.8 × 5.4 μm2. To achieve this, we exploit the properties of tight bends in plasmonic waveguides. Another advantage of the device is that it is robust against fabrication variations

    A CMOS compatible ultracompact silicon photonic optical add-drop multiplexer with misaligned Sidewall Bragg gratings

    Get PDF
    We experimentally and via simulations demonstrate ultracompact single-stage and cascaded optical add-drop multiplexers using misaligned sidewall Bragg grating in a Mach-Zehnder interferometer for the silicon-on-insulator platform. The single-stage configuration has a device footprint of 400 μm × 90 μm, and the cascaded configuration has a footprint of 400 μm × 125 μm. The proposed designs have 3-dB bandwidths of 6 nm and extinction ratios of 25 dB and 51 dB, respectively, and have been fabricated for the transverse electric mode. A minimum lithographic feature size of 80 nm is used in our design, which is within the limitation of 193 nm deep ultraviolet lithography
    • …
    corecore