17 research outputs found
Spectroscopy by frequency entangled photon pairs
Quantum spectroscopy was performed using the frequency-entangled broadband
photon pairs generated by spontaneous parametric down-conversion. An absorptive
sample was placed in front of the idler photon detector, and the frequency of
signal photons was resolved by a diffraction grating. The absorption spectrum
of the sample was measured by counting the coincidences, and the result is in
agreement with the one measured by a conventional spectrophotometer with a
classical light source.Comment: 11 pages, 5 figures, to be published in Phys. Lett.
Conditional generation of arbitrary multimode entangled states of light with linear optics
We propose a universal scheme for the probabilistic generation of an
arbitrary multimode entangled state of light with finite expansion in Fock
basis. The suggested setup involves passive linear optics, single photon
sources, strong coherent laser beams, and photodetectors with single-photon
resolution. The efficiency of this setup may be greatly enhanced if, in
addition, a quantum memory is available.Comment: 7 pages, 5 figure
Recommended from our members
Laser Doppler velocimetry measurements of particle velocity profiles in gas-solid two-phase flows
The measurement of particle velocities in two-phase gas-solid systems has a wide application in flow monitoring in process plant, where two-phase gas-solids systems are frequently employed in the form of pneumatic conveyors and solid fuel injection systems. Such measurements have proved to be difficult to make reliably in industrial environments. This paper details particle velocity measurements made in a two phase gas-solid now utilising a laser Doppler velocimetry system. Tests were carried out using both wheat flour and pulverised coal as the solids phase, with air being used as the gaseous phase throughout. A pipeline of circular section, having a diameter of 53 mm was used for the test work, with air velocities ranging from 25 to 45 m/s and suspension densities ranging from 0.001 kg to 1 kg of solids per cubic meter of air. Details of both the test equipment used, and the results of the measurements are presented
Linear optics and projective measurements alone suffice to create large-photon-number path entanglement
We propose a method for preparing maximal path entanglement with a definite
photon number N, larger than two, using projective measurements. In contrast
with the previously known schemes, our method uses only linear optics.
Specifically, we exhibit a way of generating four-photon, path-entangled states
of the form |4,0> + |0,4>, using only four beam splitters and two detectors.
These states are of major interest as a resource for quantum interferometric
sensors as well as for optical quantum lithography and quantum holography.Comment: 4 pages, 4 figure