4 research outputs found

    Quantitative Method for Simultaneous Analysis of Acetaminophen and 6 Metabolites

    No full text
    Hepatotoxicity after ingestion of high-dose acetaminophen [N-acetyl-para-aminophenol (APAP)] is caused by the metabolites of the drug. To gain more insight into factors influencing susceptibility to APAP hepatotoxicity, quantification of APAP and metabolites is important. A few methods have been developed to simultaneously quantify APAP and its most important metabolites. However, these methods require a comprehensive sample preparation and long run times. The aim of this study was to develop and validate a simplified, but sensitive method for the simultaneous quantification of acetaminophen, the main metabolites acetaminophen glucuronide and acetaminophen sulfate, and 4 Cytochrome P450-mediated metabolites by using liquid chromatography with mass spectrometric (LC-MS) detection. The method was developed and validated for the human plasma, and it entailed a single method for sample preparation, enabling quick processing of the samples followed by an LC-MS method with a chromatographic run time of 9 minutes. The method was validated for selectivity, linearity, accuracy, imprecision, dilution integrity, recovery, process efficiency, ionization efficiency, and carryover effect. The method showed good selectivity without matrix interferences. For all analytes, the mean process efficiency was >86%, and the mean ionization efficiency was >94%. Furthermore, the accuracy was between 90.3% and 112% for all analytes, and the within- and between-run imprecision were <20% for the lower limit of quantification and <14.3% for the middle level and upper limit of quantification. The method presented here enables the simultaneous quantification of APAP and 6 of its metabolites. It is less time consuming than previously reported methods because it requires only a single and simple method for the sample preparation followed by an LC-MS method with a short run time. Therefore, this analytical method provides a useful method for both clinical and research purpose

    Development and Validation of a Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) Assay for the Determination of Total and Unbound Ciprofloxacin Concentrations in Human Plasma

    No full text
    BACKGROUND: Although unbound ciprofloxacin is responsible for antibacterial effects, assays measuring the unbound drug plasma concentrations are scarce. This study aimed to develop and validate a rapid, reproducible, and sensitive liquid chromatography-tandem mass spectrometry assay for the determination of total and unbound ciprofloxacin plasma concentrations. METHODS: The determination of total ciprofloxacin concentrations required a 10 μL sample, while for unbound ciprofloxacin concentrations, it was 100 μL. Unbound ciprofloxacin was separated from protein-bound ciprofloxacin through ultrafiltration. A deuterated internal standard was used, and the sample preparation involved protein precipitation. The method was fully validated over a concentration range of 0.02-5.0 mg/L, according to the US Food and Drug Administration guidelines. In addition, its clinical application was demonstrated. RESULTS: The total run time was 1.5 minutes. For total ciprofloxacin plasma concentrations, the mean accuracy ranged from 94.5% to 105.0% across the validated range, the intraday imprecision was ≤7.6%, and the interday imprecision was ≤9.8%. For unbound ciprofloxacin plasma concentrations, the mean accuracy ranged from 92.8% to 102.1% across the validated range, the intraday imprecision was ≤7.0%, and the interday imprecision was ≤9.6%. Ciprofloxacin in plasma and ultrafiltrate remained stable for at least 96 hours at room temperature, at least 4 years at -80°C, and at least 3 freeze/thaw cycles (-80°C), with a minimum interval of 24 hours. CONCLUSIONS: The presented method is precise and accurate. It has been implemented in clinical care and research projects at a university hospital, permitting rapid determination of total and unbound ciprofloxacin

    Systemic effects of angiogenesis inhibition alter pharmacokinetics and intratumoral delivery of nab-paclitaxel

    No full text
    Angiogenesis is critical to the growth of tumors. Vascularization-targeting agents, with or without cytotoxic drugs, are widely used for the treatment of several solid tumors including esophagogastric adenocarcinoma. However, little is known about the systemic effects of anti-angiogenic therapies and how this affects the pharmacokinetics and intratumoral delivery of cytotoxic agents. In this study, patient-derived xenograft mouse models of esophageal adenocarcinoma were used to identify the effects of DC101, a murine vascular endothelial growth factor receptor 2 (VEGFR2) inhibitor, on the pharmacokinetics and the intratumoral uptake of nab-paclitaxel (NPTX). We showed that DC101 had large systemic effects resulting in decreased vasculature of intraperitoneally located organs. As a consequence, after intraperitoneal administration of NPTX, plasma uptake (5.029 +/- 4.35 vs. 25.85 +/- 2.27 mM) and intratumoral delivery (5.48 +/- 5.32 vs. 38.49 +/- 2.805 pmol/mg) of NPTX were greatly impaired in DC101-treated animals compared to control animals. Additionally, routes of NPTX elimination were altered upon angiogenesis inhibition; unchanged renal clearance and intraperitoneal accumulation of NPTX were observed, but NPTX levels were significantly lower in the liver. Histological examination of the intestine revealed a reduced thickness of the intestinal wall following DC101 therapy and suggested seepage of intraperitoneally injected NTPX through the intestinal wall to explain its reduced uptake in liver, plasma, and tumor tissue. These data explain several adverse effects observed in the clinic when using anti-angiogenic therapies and also imply that the combined use of anti-angiogenesis and cytotoxic agents in both preclinical and clinical setting is still suboptima
    corecore