42 research outputs found
Height variables in the Abelian sandpile model: scaling fields and correlations
We compute the lattice 1-site probabilities, on the upper half-plane, of the
four height variables in the two-dimensional Abelian sandpile model. We find
their exact scaling form when the insertion point is far from the boundary, and
when the boundary is either open or closed. Comparing with the predictions of a
logarithmic conformal theory with central charge c=-2, we find a full
compatibility with the following field assignments: the heights 2, 3 and 4
behave like (an unusual realization of) the logarithmic partner of a primary
field with scaling dimension 2, the primary field itself being associated with
the height 1 variable. Finite size corrections are also computed and
successfully compared with numerical simulations. Relying on these field
assignments, we formulate a conjecture for the scaling form of the lattice
2-point correlations of the height variables on the plane, which remain as yet
unknown. The way conformal invariance is realized in this system points to a
local field theory with c=-2 which is different from the triplet theory.Comment: 68 pages, 17 figures; v2: published version (minor corrections, one
comment added
Pre-logarithmic and logarithmic fields in a sandpile model
We consider the unoriented two-dimensional Abelian sandpile model on the
half-plane with open and closed boundary conditions, and relate it to the
boundary logarithmic conformal field theory with central charge c=-2. Building
on previous results, we first perform a complementary lattice analysis of the
operator effecting the change of boundary condition between open and closed,
which confirms that this operator is a weight -1/8 boundary primary field,
whose fusion agrees with lattice calculations. We then consider the operators
corresponding to the unit height variable and to a mass insertion at an
isolated site of the upper half plane and compute their one-point functions in
presence of a boundary containing the two kinds of boundary conditions. We show
that the scaling limit of the mass insertion operator is a weight zero
logarithmic field.Comment: 18 pages, 9 figures. v2: minor corrections + added appendi
Higher Order and boundary Scaling Fields in the Abelian Sandpile Model
The Abelian Sandpile Model (ASM) is a paradigm of self-organized criticality
(SOC) which is related to conformal field theory. The conformal fields
corresponding to some height clusters have been suggested before. Here we
derive the first corrections to such fields, in a field theoretical approach,
when the lattice parameter is non-vanishing and consider them in the presence
of a boundary.Comment: 7 pages, no figure
Integrals of Motion for Critical Dense Polymers and Symplectic Fermions
We consider critical dense polymers . We obtain for this model
the eigenvalues of the local integrals of motion of the underlying Conformal
Field Theory by means of Thermodynamic Bethe Ansatz. We give a detailed
description of the relation between this model and Symplectic Fermions
including the indecomposable structure of the transfer matrix. Integrals of
motion are defined directly on the lattice in terms of the Temperley Lieb
Algebra and their eigenvalues are obtained and expressed as an infinite sum of
the eigenvalues of the continuum integrals of motion. An elegant decomposition
of the transfer matrix in terms of a finite number of lattice integrals of
motion is obtained thus providing a reason for their introduction.Comment: 53 pages, version accepted for publishing on JSTA
Explicit characterization of the identity configuration in an Abelian Sandpile Model
Since the work of Creutz, identifying the group identities for the Abelian
Sandpile Model (ASM) on a given lattice is a puzzling issue: on rectangular
portions of Z^2 complex quasi-self-similar structures arise. We study the ASM
on the square lattice, in different geometries, and a variant with directed
edges. Cylinders, through their extra symmetry, allow an easy determination of
the identity, which is a homogeneous function. The directed variant on square
geometry shows a remarkable exact structure, asymptotically self-similar.Comment: 11 pages, 8 figure
Three-leg correlations in the two component spanning tree on the upper half-plane
We present a detailed asymptotic analysis of correlation functions for the
two component spanning tree on the two-dimensional lattice when one component
contains three paths connecting vicinities of two fixed lattice sites at large
distance apart. We extend the known result for correlations on the plane to
the case of the upper half-plane with closed and open boundary conditions. We
found asymptotics of correlations for distance from the boundary to one of
the fixed lattice sites for the cases and .Comment: 16 pages, 5 figure
Abelian Sandpile Model on the Honeycomb Lattice
We check the universality properties of the two-dimensional Abelian sandpile
model by computing some of its properties on the honeycomb lattice. Exact
expressions for unit height correlation functions in presence of boundaries and
for different boundary conditions are derived. Also, we study the statistics of
the boundaries of avalanche waves by using the theory of SLE and suggest that
these curves are conformally invariant and described by SLE2.Comment: 24 pages, 5 figure
Wind on the boundary for the Abelian sandpile model
We continue our investigation of the two-dimensional Abelian sandpile model
in terms of a logarithmic conformal field theory with central charge c=-2, by
introducing two new boundary conditions. These have two unusual features: they
carry an intrinsic orientation, and, more strangely, they cannot be imposed
uniformly on a whole boundary (like the edge of a cylinder). They lead to seven
new boundary condition changing fields, some of them being in highest weight
representations (weights -1/8, 0 and 3/8), some others belonging to
indecomposable representations with rank 2 Jordan cells (lowest weights 0 and
1). Their fusion algebra appears to be in full agreement with the fusion rules
conjectured by Gaberdiel and Kausch.Comment: 26 pages, 4 figure
Solvable Critical Dense Polymers
A lattice model of critical dense polymers is solved exactly for finite
strips. The model is the first member of the principal series of the recently
introduced logarithmic minimal models. The key to the solution is a functional
equation in the form of an inversion identity satisfied by the commuting
double-row transfer matrices. This is established directly in the planar
Temperley-Lieb algebra and holds independently of the space of link states on
which the transfer matrices act. Different sectors are obtained by acting on
link states with s-1 defects where s=1,2,3,... is an extended Kac label. The
bulk and boundary free energies and finite-size corrections are obtained from
the Euler-Maclaurin formula. The eigenvalues of the transfer matrix are
classified by the physical combinatorics of the patterns of zeros in the
complex spectral-parameter plane. This yields a selection rule for the
physically relevant solutions to the inversion identity and explicit finitized
characters for the associated quasi-rational representations. In particular, in
the scaling limit, we confirm the central charge c=-2 and conformal weights
Delta_s=((2-s)^2-1)/8 for s=1,2,3,.... We also discuss a diagrammatic
implementation of fusion and show with examples how indecomposable
representations arise. We examine the structure of these representations and
present a conjecture for the general fusion rules within our framework.Comment: 35 pages, v2: comments and references adde
Logarithmic two-point correlators in the Abelian sandpile model
We present the detailed calculations of the asymptotics of two-site
correlation functions for height variables in the two-dimensional Abelian
sandpile model. By using combinatorial methods for the enumeration of spanning
trees, we extend the well-known result for the correlation of minimal heights to for
height values . These results confirm the dominant logarithmic
behaviour for
large , predicted by logarithmic conformal field theory based on field
identifications obtained previously. We obtain, from our lattice calculations,
the explicit values for the coefficients and (the latter are new).Comment: 28 page
