18 research outputs found

    Computer-Aided 2D and 3D quantification of human stem cell fate from in vitro samples using Volocity high performance image analysis software

    Get PDF
    AbstractAccurate automated cell fate analysis of immunostained human stem cells from 2- and 3-dimensional (2D-3D) images would improve efficiency in the field of stem cell research. Development of an accurate and precise tool that reduces variability and the time needed for human stem cell fate analysis will improve productivity and interpretability of the data across research groups. In this study, we have created protocols for high performance image analysis software Volocity® to classify and quantify cytoplasmic and nuclear cell fate markers from 2D-3D images of human neural stem cells after in vitro differentiation. To enhance 3D image capture efficiency, we optimized the image acquisition settings of an Olympus FV10i® confocal laser scanning microscope to match our quantification protocols and improve cell fate classification. The methods developed in this study will allow for a more time efficient and accurate software based, operator validated, stem cell fate classification and quantification from 2D and 3D images, and yield the highest ≥94.4% correspondence with human recognized objects

    Safety of human neural stem cell transplantation in chronic spinal cord injury.

    No full text
    The spinal cord injury (SCI) microenvironment undergoes dynamic changes over time, which could potentially affect survival or differentiation of cells in early versus delayed transplantation study designs. Accordingly, assessment of safety parameters, including cell survival, migration, fate, sensory fiber sprouting, and behavioral measures of pain sensitivity in animals receiving transplants during the chronic postinjury period is required for establishing a potential therapeutic window. The goal of the study was assessment of safety parameters for delayed transplantation of human central nervous system-derived neural stem cells (hCNS-SCns) by comparing hCNS-SCns transplantation in the subacute period, 9 days postinjury (DPI), versus the chronic period, 60 DPI, in contusion-injured athymic nude rats. Although the number of surviving human cells after chronic transplantation was lower, no changes in cell migration were detected between the 9 and 60 DPI cohorts; however, the data suggest chronic transplantation may have enhanced the generation of mature oligodendrocytes. The timing of transplantation did not induce changes in allodynia or hyperalgesia measures. Together, these data support the safety of hCNS-SCns transplantation in the chronic period post-SCI

    Preclinical Efficacy Failure of Human CNS-Derived Stem Cells for Use in the Pathway Study of Cervical Spinal Cord Injury

    No full text
    We previously showed the efficacy of multiple research cell lines (RCLs) of human CNS neural stem cells (HuCNS-SCs) in mouse and rat models of thoracic spinal cord injury (SCI), supporting a thoracic SCI clinical trial. Experts recommend in vivo preclinical testing of the intended clinical cell lot/line (CCL) in models with validity for the planned clinical target. We therefore tested the efficacy of two HuCNS-SC lines in cervical SCI: one RCL, and one CCL intended for use in the Pathway Study of cervical SCI in man. We assessed locomotor recovery and sensory function, as well as engraftment, migration, and fate. No evidence of efficacy of the CCL was observed; some data suggested a negative impact of the CCL on outcomes. These data raise questions about the development and validation of potency/comparability assays for clinical testing of cell products, and lack of US Food and Drug Administration requirements for in vivo testing of intended clinical cell lines

    Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury

    Get PDF
    The effect of transplantation dose on the spatiotemporal dynamics of human neural stem cell (hNSC) engraftment has not been quantitatively evaluated in the central nervous system. We investigated changes over time in engraftment/survival, proliferation, and migration of multipotent human central nervous system-derived neural stem cells (hCNS-SCns) transplanted at doses ranging from 10,000 to 500,000 cells in spinal cord injured immunodeficient mice. Transplant dose was inversely correlated with measures of donor cell proliferation at 2 weeks post-transplant (WPT) and dose-normalized engraftment at 16 WPT. Critically, mice receiving the highest cell dose exhibited an engraftment plateau, in which the total number of engrafted human cells never exceeded the initial dose. These data suggest that donor cell expansion was inversely regulated by target niche parameters and/or transplantation density. Investigation of the response of donor cells to the host microenvironment should be a key variable in defining target cell dose in pre-clinical models of CNS disease and injury
    corecore