117 research outputs found

    Gradient Descent Only Converges to Minimizers: Non-Isolated Critical Points and Invariant Regions

    Get PDF
    Given a non-convex twice differentiable cost function f, we prove that the set of initial conditions so that gradient descent converges to saddle points where \nabla^2 f has at least one strictly negative eigenvalue has (Lebesgue) measure zero, even for cost functions f with non-isolated critical points, answering an open question in [Lee, Simchowitz, Jordan, Recht, COLT2016]. Moreover, this result extends to forward-invariant convex subspaces, allowing for weak (non-globally Lipschitz) smoothness assumptions. Finally, we produce an upper bound on the allowable step-size.Comment: 2 figure

    Cycles in adversarial regularized learning

    Get PDF
    Regularized learning is a fundamental technique in online optimization, machine learning and many other fields of computer science. A natural question that arises in these settings is how regularized learning algorithms behave when faced against each other. We study a natural formulation of this problem by coupling regularized learning dynamics in zero-sum games. We show that the system's behavior is Poincar\'e recurrent, implying that almost every trajectory revisits any (arbitrarily small) neighborhood of its starting point infinitely often. This cycling behavior is robust to the agents' choice of regularization mechanism (each agent could be using a different regularizer), to positive-affine transformations of the agents' utilities, and it also persists in the case of networked competition, i.e., for zero-sum polymatrix games.Comment: 22 pages, 4 figure

    Oceanic Games: Centralization Risks and Incentives in Blockchain Mining

    Full text link
    To participate in the distributed consensus of permissionless blockchains, prospective nodes -- or miners -- provide proof of designated, costly resources. However, in contrast to the intended decentralization, current data on blockchain mining unveils increased concentration of these resources in a few major entities, typically mining pools. To study strategic considerations in this setting, we employ the concept of Oceanic Games, Milnor and Shapley (1978). Oceanic Games have been used to analyze decision making in corporate settings with small numbers of dominant players (shareholders) and large numbers of individually insignificant players, the ocean. Unlike standard equilibrium models, they focus on measuring the value (or power) per entity and per unit of resource} in a given distribution of resources. These values are viewed as strategic components in coalition formations, mergers and resource acquisitions. Considering such issues relevant to blockchain governance and long-term sustainability, we adapt oceanic games to blockchain mining and illustrate the defined concepts via examples. The application of existing results reveals incentives for individual miners to merge in order to increase the value of their resources. This offers an alternative perspective to the observed centralization and concentration of mining power. Beyond numerical simulations, we use the model to identify issues relevant to the design of future cryptocurrencies and formulate prospective research questions.Comment: [Best Paper Award] at the International Conference on Mathematical Research for Blockchain Economy (MARBLE 2019
    • …
    corecore