5,742 research outputs found

    Process chain approach to high-order perturbation calculus for quantum lattice models

    Full text link
    A method based on Rayleigh-Schroedinger perturbation theory is developed that allows to obtain high-order series expansions for ground-state properties of quantum lattice models. The approach is capable of treating both lattice geometries of large spatial dimensionalities d and on-site degrees of freedom with large state space dimensionalities. It has recently been used to accurately compute the zero-temperature phase diagram of the Bose-Hubbard model on a hypercubic lattice, up to arbitrary large filling and for d=2, 3 and greater [Teichmann et al., Phys. Rev. B 79, 100503(R) (2009)].Comment: 11 pages, 6 figure

    An Algorithmic Approach to Quantum Field Theory

    Full text link
    The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.Comment: 44 pages, to be published in IJMP

    Neural Network Aided Glitch-Burst Discrimination and Glitch Classification

    Full text link
    We investigate the potential of neural-network based classifiers for discriminating gravitational wave bursts (GWBs) of a given canonical family (e.g. core-collapse supernova waveforms) from typical transient instrumental artifacts (glitches), in the data of a single detector. The further classification of glitches into typical sets is explored.In order to provide a proof of concept,we use the core-collapse supernova waveform catalog produced by H. Dimmelmeier and co-Workers, and the data base of glitches observed in laser interferometer gravitational wave observatory (LIGO) data maintained by P. Saulson and co-Workers to construct datasets of (windowed) transient waveforms (glitches and bursts) in additive (Gaussian and compound-Gaussian) noise with different signal-tonoise ratios (SNR). Principal component analysis (PCA) is next implemented for reducing data dimensionality, yielding results consistent with, and extending those in the literature. Then, a multilayer perceptron is trained by a backpropagation algorithm (MLP-BP) on a data subset, and used to classify the transients as glitch or burst. A Self-Organizing Map (SOM) architecture is finally used to classify the glitches. The glitch/burst discrimination and glitch classification abilities are gauged in terms of the related truth tables. Preliminary results suggest that the approach is effective and robust throughout the SNR range of practical interest. Perspective applications pertain both to distributed (network, multisensor) detection of GWBs, where someintelligenceat the single node level can be introduced, and instrument diagnostics/optimization, where spurious transients can be identified, classified and hopefully traced back to their entry point

    New Phases of SU(3) and SU(4) at Finite Temperature

    Full text link
    The addition of an adjoint Polyakov loop term to the action of a pure gauge theory at finite temperature leads to new phases of SU(N) gauge theories. For SU(3), a new phase is found which breaks Z(3) symmetry in a novel way; for SU(4), the new phase exhibits spontaneous symmetry breaking of Z(4) to Z(2), representing a partially confined phase in which quarks are confined, but diquarks are not. The overall phase structure and thermodynamics is consistent with a theoretical model of the effective potential for the Polyakov loop based on perturbation theory.Comment: 18 pages, 17 figures, RevTeX

    Quantifying Timing Leaks and Cost Optimisation

    Full text link
    We develop a new notion of security against timing attacks where the attacker is able to simultaneously observe the execution time of a program and the probability of the values of low variables. We then show how to measure the security of a program with respect to this notion via a computable estimate of the timing leakage and use this estimate for cost optimisation.Comment: 16 pages, 2 figures, 4 tables. A shorter version is included in the proceedings of ICICS'08 - 10th International Conference on Information and Communications Security, 20-22 October, 2008 Birmingham, U

    Tanaka-Tagoshi Parametrization of post-1PN Spin-Free Gravitational Wave Chirps: Equispaced and Cardinal Interpolated Lattices For First Generation Interferometric Antennas

    Full text link
    The spin-free binary-inspiral parameter-space introduced by Tanaka and Tagoshi to construct a uniformly-spaced lattice of templates at (and possibly beyond) 2.5PN2.5PN order is shown to work for all first generation interferometric gravitational wave antennas. This allows to extend the minimum-redundant cardinal interpolation techniques of the correlator bank developed by the Authors to the highest available order PN templates. The total number of 2PN templates to be computed for a minimal match Γ=0.97\Gamma=0.97 is reduced by a factor 4, as in the 1PN case.Comment: 9 pages, 8 figures, 3 tables, accepted for publication in Phys. Rev.

    Probabilistic abstract interpretation: From trace semantics to DTMC’s and linear regression

    Get PDF
    In order to perform probabilistic program analysis we need to consider probabilistic languages or languages with a probabilistic semantics, as well as a corresponding framework for the analysis which is able to accommodate probabilistic properties and properties of probabilistic computations. To this purpose we investigate the relationship between three different types of probabilistic semantics for a core imperative language, namely Kozen’s Fixpoint Semantics, our Linear Operator Semantics and probabilistic versions of Maximal Trace Semantics. We also discuss the relationship between Probabilistic Abstract Interpretation (PAI) and statistical or linear regression analysis. While classical Abstract Interpretation, based on Galois connection, allows only for worst-case analyses, the use of the Moore-Penrose pseudo inverse in PAI opens the possibility of exploiting statistical and noisy observations in order to analyse and identify various system properties
    • …
    corecore