23 research outputs found
Roles of traditional medicine and traditional healers for rabies prevention and potential impacts on post-exposure prophylaxis : a literature review
INTRODUCTION :
Globally, traditional medicine is widely used to treat a variety of injuries and illnesses, including dog bites, and exposures that are risky for rabies. However, efficacy of most traditional
remedies used for rabies prevention or treatment has not been demonstrated in controlled
trials or proven in community-based surveys.
METHODS :
Six databases were searched including the terms rabies, traditional treatment, traditional
remedy, traditional therapy, traditional medicine, and medicinal treatment to review traditional remedies used in the prevention and treatment of rabies. In addition, published literature of rabies transmission dynamics was used to estimate statistical likelihood of dog bite
victims developing rabies to provide clarity as to why traditional healers have a high apparent success rate when preventing death from rabies in victims bitten by suspected rabid
dogs.
RESULTS :
Literature review yielded 50 articles, including three controlled experiments, that described
use of traditional remedies for rabies prevention and treatment. Traditional remedies for
rabies ranged from plant- or animal-based products to spiritual rituals; however, only a few
controlled mice trials were conducted, and none of these trials demonstrated efficacy in preventing or treating rabies. Risk of dying from rabies after a bite from a dog with unknown
rabies status is low, 1.90% (0.05%-29.60%). Therefore, traditional healers had a 98.10%
(70.40%-99.95%) apparent success rate in preventing death from suspected rabid dog bites
despite inefficaciousness of herbal remedies. CONCLUSION :
There was no universal plant species or route of administration that was consistently used
for rabies prevention or treatment across countries. No traditional remedy was efficacious in
the prevention or treatment of rabies in randomized controlled experiments. Understanding
the cultural context under which traditional remedies are used may facilitate collaboration of
traditional healers with the modern medical system to ensure timely and appropriate use of
proven therapies for prevention and clinical management of rabies.https://journals.plos.org/plosntdsdm2022BiochemistryGeneticsMicrobiology and Plant Patholog
Every Dog Has Its Data:Evaluation of a Technology-Aided Canine Rabies Vaccination Campaign to Implement a Microplanning Approach
Background: Robust dog vaccination coverage is the primary way to eliminate canine rabies. Haiti conducts annual canine mass vaccination campaigns, but still has the most human deaths in the Latin American and Caribbean region. We conducted an evaluation of dog vaccination methods in Haiti to determine if more intensive, data-driven vaccination methods, using smartphones for data reporting and geo-communication, could increase vaccination coverage to a level capable of disrupting rabies virus transmission.Methods: Two cities were designated into âTraditionalâ and âTechnology-aidedâ vaccination areas. Traditional areas utilized historical methods of vaccination staff management, whereas Technology-aided areas used smartphone-supported spatial coordination and management of vaccination teams. Smartphones enabled real time two-way geo-communication between campaign managers and vaccinators. Campaign managers provided geographic instruction to vaccinators by assigning mapped daily vaccination boundaries displayed on phone handsets, whilst vaccinators uploaded spatial data of dogs vaccinated for review by the campaign manager to inform assignment of subsequent vaccination zones. The methods were evaluated for vaccination effort, coverage, and cost.Results: A total of 11,420 dogs were vaccinated during the 14-day campaign. The technology-aided approach achieved 80% estimated vaccination coverage as compared to 44% in traditional areas. Daily vaccination rate was higher in Traditional areas (41.7 vaccinations per team-day) compared to in technology-aided areas (26.8) but resulted in significantly lower vaccination coverages. The cost per dog vaccinated increased exponentially with the associated vaccination coverage, with a cost of 2.51 for 50% coverage, and $3.19 for 70% coverage.Conclusions: Traditional vaccination methods failed to achieve sufficiently high vaccination coverages needed to interrupt sustained rabies virus transmission, whilst the technology-aided approach increased coverage above this critical threshold. Over successive campaigns, this difference is likely to represent the success or failure of the intervention in eliminating the rabies virus. Technology-aided vaccination should be considered in resource limited settings where rabies has not been controlled by Traditional vaccination methods. The use of technology to direct health care workers based on near-real-time spatial data from the field has myriad potential applications in other vaccination and public health initiatives
Comparing the genetic typing methods for effective surveillance and rabies control in Georgia
A full nucleoprotein gene sequencing of 68 isolates collected from passive rabies surveillance system in Georgia between 2015 and 2016 identified two distinct dog rabies phylogroups, GEO_V1 and GEO_V2, which both belonged to the cosmopolitan dog clade. GEO_V1 was found throughout the country and was further divided into four sub-phylogroups that overlapped geographically; GEO_V2 was found in the southeast region and was closely related to dog rabies in Azerbaijan. A sequence analysis of the full N gene, partial nucleoprotein gene of N-terminal and C-terminal, and the amplicon sequences of pan-lyssavirus RT-qPCR LN34 showed that all four sequencing approaches provided clear genetic typing results of canine rabies and could further differentiate GEO_V1 and GEO_V2. The phylogenetic analysis results vary and were affected by the length of the sequences used. Amplicon sequencing of the LN34 assay positive samples provided a rapid and cost-effective method for rabies genetic typing, which is important for improving rabies surveillance and canine rabies eradication globally
Clinical Manifestations of an Outbreak of Monkeypox Virus in Captive Chimpanzees in Cameroon, 2016
Monkeypox virus (MPXV) is a re-emerging virus of global concern. An outbreak of Clade I MPXV affected 20 captive chimpanzees in Cameroon in 2016. We describe the epidemiology, virology, phylogenetics, and clinical progression of this outbreak. Clinical signs included exanthema, facial swelling, peri-laryngeal swelling, and eschar. Mpox can be lethal in captive chimpanzees with death likely resulting from respiratory complications. We advise avoiding anesthesia in animals with respiratory signs to reduce the likelihood of death. This outbreak presented a risk to animal care staff. There is a need for increased awareness and a One Health approach to preparation for outbreaks in wildlife rescue centers in primate range states where MPXV occurs. Control measures should include quarantining affected animals, limiting human contacts, surveillance of humans and animals, use of personal protective equipment, and regular decontamination of enclosures.</p
The formation of the Eastern Africa rabies network : a sub-regional approach to rabies elimination
International rabies networks have been formed in many of the canine-rabies endemic regions
around the world to create unified and directed regional approaches towards elimination. The aim
of the first sub-regional Eastern Africa rabies network meeting, which included Kenya, Ethiopia,
Tanzania, Rwanda, and Uganda, was to discuss how individual country strategies could be
coordinated to address the unique challenges that are faced within the network. The Stepwise
Approach towards Rabies Elimination and the Global Dog Rabies Elimination Pathway tool were
used to stimulate discussion and planning to achieve the elimination of canine-mediated human
rabies by 2030. Our analysis estimated a total dog population of 18.3 million dogs in the Eastern
Africa region. The current dog vaccination coverage was estimated to be approximately 5%
(915,000 dogs), with an estimated 4910 vaccinators available. Assuming that every vaccinator
performs rabies vaccination, this equated to each vaccinator currently vaccinating 186 dogs per year, whilst the target would be to vaccinate 2609 dogs every year for the community to reach 70% coverage. In order to achieve the World Health Organization-recommended 70% vaccination coverage, an additional 11 million dogs need to be vaccinated each year, pointing to an average annual shortfall of $ 23 million USD in current spending to achieve elimination by 2030 across the region. Improved vaccination efficiency within the region could be achieved by improving logistics and/or incorporating multiple vaccination methods to increase vaccinator efficiency, and could serve to reduce the financial burden associated with rabies elimination. Regional approaches to rabies control are of value, as neighboring countries can share their unique challenges while, at the same time, common approaches can be developed and resource-saving strategies can be implemented.http://www.mdpi.com/journal/tropicalmedam2018Microbiology and Plant Patholog
Prioritization of zoonotic diseases in Kenya, 2015
INTRODUCTION:Zoonotic diseases have varying public health burden and socio-economic impact across time and geographical settings making their prioritization for prevention and control important at the national level. We conducted systematic prioritization of zoonotic diseases and developed a ranked list of these diseases that would guide allocation of resources to enhance their surveillance, prevention, and control. METHODS:A group of 36 medical, veterinary, and wildlife experts in zoonoses from government, research institutions and universities in Kenya prioritized 36 diseases using a semi-quantitative One Health Zoonotic Disease Prioritization tool developed by Centers for Disease Control and Prevention with slight adaptations. The tool comprises five steps: listing of zoonotic diseases to be prioritized, development of ranking criteria, weighting criteria by pairwise comparison through analytical hierarchical process, scoring each zoonotic disease based on the criteria, and aggregation of scores. RESULTS:In order of importance, the participants identified severity of illness in humans, epidemic/pandemic potential in humans, socio-economic burden, prevalence/incidence and availability of interventions (weighted scores assigned to each criteria were 0.23, 0.22, 0.21, 0.17 and 0.17 respectively), as the criteria to define the relative importance of the diseases. The top five priority diseases in descending order of ranking were anthrax, trypanosomiasis, rabies, brucellosis and Rift Valley fever. CONCLUSION:Although less prominently mentioned, neglected zoonotic diseases ranked highly compared to those with epidemic potential suggesting these endemic diseases cause substantial public health burden. The list of priority zoonotic disease is crucial for the targeted allocation of resources and informing disease prevention and control programs for zoonoses in Kenya
Portable Rabies Virus Sequencing in Canine Rabies Endemic Countries Using the Oxford Nanopore MinION
As countries with endemic canine rabies progress towards elimination by 2030, it will become necessary to employ techniques to help plan, monitor, and confirm canine rabies elimination. Sequencing can provide critical information to inform control and vaccination strategies by identifying genetically distinct virus variants that may have different host reservoir species or geographic distributions. However, many rabies testing laboratories lack the resources or expertise for sequencing, especially in remote or rural areas where human rabies deaths are highest. We developed a low-cost, high throughput rabies virus sequencing method using the Oxford Nanopore MinION portable sequencer. A total of 259 sequences were generated from diverse rabies virus isolates in public health laboratories lacking rabies virus sequencing capacity in Guatemala, India, Kenya, and Vietnam. Phylogenetic analysis provided valuable insight into rabies virus diversity and distribution in these countries and identified a new rabies virus lineage in Kenya, the first published canine rabies virus sequence from Guatemala, evidence of rabies spread across an international border in Vietnam, and importation of a rabid dog into a state working to become rabies-free in India. Taken together, our evaluation highlights the MinIONâs potential for low-cost, high volume sequencing of pathogens in locations with limited resources
Evaluation of species identification and rabies virus characterization among bat rabies cases in the United States
OBJECTIVE To evaluate species identification and rabies virus (RABV) characterization among samples from bats submitted for rabies testing in the United States and assess whether a standardized approach to specimen selection for RABV characterization could enhance detection of a sentinel event in virus dissemination among bats. SAMPLE United States public health rabies surveillance system data collected in January 2010 through December 2015. PROCEDURES The number of rabies-tested bats for which species was reported and the number of RABV-positive samples for which virus characterization would likely provide information regarding introduction of novel RABV variants and translocation and host-shift events were calculated. These specimens were designated as specimens of epizootiological importance (SEIs). Additionally, the estimated test load that public health laboratories could expect if all SEIs underwent RABV characterization was determined. RESULTS Species was reported for 74,928 of 160,017 (47%) bats submitted for rabies testing. Identified SEIs were grouped in 3 subcategories, namely nonindigenous bats; bats in southern border states, Florida, Puerto Rico, and the US Virgin Islands; and bats of species that are not commonly found to be inflected with RABV. Annually, 692 (95% CI, 600 to 784) SEIs were identified, of which only 295 (95% CI, 148 to 442) underwent virus characterization. Virus characterization of all SEIs would be expected to increase public health laboratoriesâ overall test load by 397 (95% CI, 287 to 506) samples each year. CONCLUSIONS AND CLINICAL RELEVANCE Species identification and RABV characterization may aid detection of a sentinel event in bat RABV dissemination. With additional resources, RABV characterization of all SEIs as a standardized approach to testing could contribute to knowledge of circulating bat RABV variants
Determining the post-elimination level of vaccination needed to prevent re-establishment of dog rabies.
BackgroundOnce a canine rabies-free status has been achieved, there is little guidance available on vaccination standards to maintain that status. In areas with risk of reintroduction, it may be practical to continue vaccinating portions of susceptible dogs to prevent re-establishment of canine rabies.MethodsWe used a modified version of RabiesEcon, a deterministic mathematical model, to evaluate the potential impacts and cost-effectiveness of preventing the reintroduction of canine rabies through proactive dog vaccination. We analyzed four scenarios to simulate varying risk levels involving the reintroduction of canine rabies into an area where it is no longer present. In a sensitivity analysis, we examined the influences of reintroduction frequency and intensity, the density of susceptible dog population, dog birth rate, dog life expectancy, vaccine efficacy, rate of loss of vaccine immunity, and the basic reproduction number (R0).ResultsTo prevent the re-establishment of canine rabies, it is necessary to vaccinate 38% to 56% of free-roaming dogs that have no immunity to rabies. These coverage levels were most sensitive to adjustments in R0 followed by the vaccine efficacy and the rate of loss of vaccine immunity. Among the various preventive vaccination strategies, it was most cost-effective to continue dog vaccination at the minimum coverage required, with the average cost per human death averted ranging from 398 USD.ConclusionsWithout strong surveillance systems, rabies-free countries are vulnerable to becoming endemic when incursions happen. To prevent this, it may be necessary to vaccinate at least 38% to 56% of the susceptible dog population depending on the risk of reintroduction and transmission dynamics