36 research outputs found
Theoretical study of electronic Raman scattering of Borocarbide superconductors
The electronic Raman scattering of Borocarbide superconductors is studied
based on the weak coupling theory with -wave gap symmetry. The low energy
behaviors and the relative peak positions can be naturally understood, while
the explanation of the detailed shape of the peak seems to require a
strong inelastic interaction not present in the weak coupling theory.Comment: Revtex 4 file, 9 pages and 5 figure
The AB interface in superfluid He-3 as a simulated cosmological brane.
We present measurements of the transport of superfluid He-3 quasiparticle excitations in the ballistic limit at temperatures well below T-c , and an interpretation of unexpected results as an experimental simulation of cosmological processes. Using a variable magnetic field profile we stabilize a layer of A phase across a cylinder of B phase, creating both an AB and a BA interface. These highly ordered interfaces may provide an ideal laboratory analogy for the branes and anti-branes of current cosmology. It has been suggested that brane interaction and annihilation are involved in inflation in the early Universe and leave behind topological defects such as cosmic strings. In our experiments we have annihilated our AB/BA branes by ramping down the magnetic field to remove the A phase layer. We then find that the quasiparticles face an extra impedance owing to defects left behind in the B phase texture. This is the first definitive observation of such a phenomenon