104 research outputs found

    Biological pathways associated with neuroprogression in bipolar disorder

    Get PDF
    There is evidence suggesting clinical progression in a subset of patients with bipolar disorder (BD). This progression is associated with worse clinical outcomes and biological changes. Molecular pathways and biological markers of clinical progression have been identified and may explain the progressive changes associated with this disorder. The biological basis for clinical progression in BD is called neuroprogression. We propose that the following intertwined pathways provide the biological basis of neuroprogression: inflammation, oxidative stress, impaired calcium signaling, endoplasmic reticulum and mitochondrial dysfunction, and impaired neuroplasticity and cellular resilience. The nonlinear interaction of these pathways may worsen clinical outcomes, cognition, and functioning. Understanding neuroprogression in BD is crucial for identifying novel therapeutic targets, preventing illness progression, and ultimately promoting better outcomes

    Effects of lithium on inflammatory and neurotrophic factors after an immune challenge in a lisdexamfetamine animal model of mania

    Get PDF
    Objective: To evaluate whether an animal model of mania induced by lisdexamfetamine dimesylate (LDX) has an inflammatory profile and whether immune activation by lipopolysaccharides (LPS) has a cumulative effect on subsequent stimuli in this model. We also evaluated the action of lithium (Li) on inflammatory and neurotrophic factors. Methods: Adult male Wistar rats were subjected to an animal model of mania. After the open-field test, they were given LPS to induce systemic immune activation. Subsequently, the animals’ blood was collected, and their serum levels of brain-derived neurotrophic factor and inflammatory markers (tumor necrosis factor [TNF]-a, interleukin [IL]-6, IL-1b, IL-10, and inducible nitric oxide synthase [iNOS]) were measured. Results: LDX induced hyperactivity in the animals, but no inflammatory marker levels increased except brain-derived neurotrophic factor (BDNF). Li had no effect on serum BDNF levels but prevented iNOS levels from increasing in animals subjected to immune activation. Conclusion: Although Li prevented an LPS-induced increase in serum iNOS levels, its potential antiinflammatory effects in this animal model of mania were conflicting

    Effects of childhood trauma on BDNF and TBARS during crack-cocaine withdrawal

    Get PDF
    Objective: To evaluate the association between childhood trauma (CT) and serum levels of brainderived neurotrophic factor (BDNF) and thiobarbituric acid-reactive substances (TBARS) during crackcocaine withdrawal. Method: Thirty-three male crack-cocaine users were recruited at admission to a public addiction treatment unit. Serum BDNF and TBARS levels were evaluated at intake and discharge. Information about drug use was assessed by the Addiction Severity Index-6th Version (ASI-6); CT was reported throughout the Childhood Trauma Questionnaire (CTQ). CTQ scores were calculated based on a latent analysis model that divided the sample into low-, medium-, and high-level trauma groups. Results: There was a significant increase in BDNF levels from admission to discharge, which did not differ across CT subgroups. For TBARS levels, we found a significant time vs. trauma interaction (F2,28 = 6.357, p = 0.005,Zp 2 = 0.312). In participants with low trauma level, TBARS decreased, while in those with a high trauma level, TBARS increased during early withdrawal. Conclusion: TBARS levels showed opposite patterns of change in crack-cocaine withdrawal according to baseline CT. These results suggest that CT could be associated with more severe neurological impairment during withdrawal

    Olanzapine plus fluoxetine treatment increases Nt-3 protein levels in the rat prefrontal cortex

    Get PDF
    AbstractEvidence is emerging for a role for neurotrophins in the treatment of mood disorders. In this study, we evaluated the effects of chronic administration of fluoxetine, olanzapine and the combination of fluoxetine/olanzapine on the brain-derived-neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3) in the rat brain. Wistar rats received daily injections of olanzapine (3 or 6mg/kg) and/or fluoxetine (12.5 or 25mg/kg) for 28 days, and we evaluated for BDNF, NGF and NT-3 protein levels in the prefrontal cortex, hippocampus and amygdala. Our results showed that treatment with fluoxetine and olanzapine alone or in combination did not alter BDNF in the prefrontal cortex (p=0.37), hippocampus (p=0.98) and amygdala (p=0.57) or NGF protein levels in the prefrontal cortex (p=0.72), hippocampus (p=0.23) and amygdala (p=0.64), but NT-3 protein levels were increased by olanzapine 6mg/kg/fluoxetine 25mg/kg combination in the prefrontal cortex (p=0.03), in the hippocampus (p=0.83) and amygdala (p=0.88) NT-3 protein levels did not alter. Finally, these findings further support the hypothesis that NT-3 could be involved in the effect of treatment with antipsychotic and antidepressant combination in mood disorders
    • …
    corecore