21 research outputs found

    Correlation Based Method for Phase Identification in a Three Phase LV Distribution Network

    Get PDF
    Low voltage distribution networks feature a high degree of load unbalance and the addition of rooftop photovoltaic is driving further unbalances in the network. Single phase consumers are distributed across the phases but even if the consumer distribution was well balanced when the network was constructed changes will occur over time. Distribution transformer losses are increased by unbalanced loadings. The estimation of transformer losses is a necessary part of the routine upgrading and replacement of transformers and the identification of the phase connections of households allows a precise estimation of the phase loadings and total transformer loss. This paper presents a new technique and preliminary test results for a method of automatically identifying the phase of each customer by correlating voltage information from the utility's transformer system with voltage information from customer smart meters. The techniques are novel as they are purely based upon a time series of electrical voltage measurements taken at the household and at the distribution transformer. Experimental results using a combination of electrical power and current of the real smart meter datasets demonstrate the performance of our techniques

    Single Iteration Conditional Based DSE Considering Spatial and Temporal Correlation

    Get PDF
    The increasing complexity of distribution network calls for advancement in distribution system state estimation (DSSE) to monitor the operating conditions more accurately. Sufficient number of measurements is imperative for a reliable and accurate state estimation. The limitation on the measurement devices is generally tackled with using the so-called pseudo measured data. However, the errors in pseudo data by cur-rent techniques are quite high leading to a poor DSSE. As customer loads in distribution networks show high cross-correlation in various locations and over successive time steps, it is plausible that deploying the spatial-temporal dependencies can improve the pseudo data accuracy and estimation. Although, the role of spatial dependency in DSSE has been addressed in the literature, one can hardly find an efficient DSSE framework capable of incorporating temporal dependencies present in customer loads. Consequently, to obtain a more efficient and accurate state estimation, we propose a new non-iterative DSSE framework to involve spatial-temporal dependencies together. The spatial-temporal dependencies are modeled by conditional multivariate complex Gaussian distributions and are studied for both static and real-time state estimations, where information at preceding time steps are employed to increase the accuracy of DSSE. The efficiency of the proposed approach is verified based on quality and accuracy indices, standard deviation and computational time. Two balanced medium voltage (MV) and one unbalanced low voltage (LV) distribution case studies are used for evaluations

    Distribution transformer lifetime analysis in the presence of demand response and rooftop PV integration

    Get PDF
    Many distribution transformers have already exceeded half of their expected service life of 35 years in the infrastructure of Western Power, the electric distribution company supplying southwest of Western Australia, Australia. Therefore, it is anticipated that a high investment on transformer replacement happens in the near future. However, high renewable integration and demand response (DR) are promising resources to defer the investment on infrastructure upgrade and extend the lifetime of transformers. This paper investigates the impact of rooftop photovoltaic (PV) integration and customer engagement through DR on the lifetime of transformers in electric distribution networks. To this aim, first, a time series modelling of load, DR and PV is utilised for each year over a planning period. This load model is applied to a typical distribution transformer for which the hot-spot temperature rise is modelled based on the relevant standard. Using this calculation platform, the loss of life and the actual age of distribution transformer are obtained. Then, various scenarios including different levels of PV penetration and DR contribution are examined, and their impacts on the age of transformer are reported. Finally, the equivalent loss of net present value of distribution transformer is formulated and discussed. This formulation gives major benefits to the distribution network planners for analysing the contribution of PV and DR on lifetime extension of the distribution transformer. In addition, the provided model can be utilised in optimal investment analysis to find the best time for the transformer replacement and the associated cost considering PV penetration and DR. The simulation results show that integration of PV and DR within a feeder can significantly extend the lifetime of transformers

    Voltage balance improvement in urban low voltage distribution networks

    Get PDF
    This project is a step forward in developing effective methods to mitigate voltage unbalance in urban residential networks. The method is proposed to reduce energy losses and improve quality of service in strongly unbalanced low-voltage networks. The method is based on phase swapping as well as optimal placement and sizing of Distribution Static Synchronous Compensator (D-STATCOM) using a Particle Swarm Optimisation method

    Impact of high PV penetration on distribution transformer insulation life

    Get PDF
    The reliable operation of distribution systems is critically dependent on detailed understanding of load impacts on distribution transformer insulation systems. This paper estimates the impact of rooftop photovoltaic (PV) generation on a typical 200-kVA, 22/0.415-kV distribution transformer life under different operating conditions. This transformer supplies a suburban area with a high penetration of roof top photovoltaic systems. The transformer loads and the phase distribution of the PV systems are significantly unbalanced. Oil and hot-spot temperature and remnant life of distribution transformer under different PV and balance scenarios are calculated. It is shown that PV can significantly extend the transformer life

    Consumer phase identification in a three phase unbalanced LV distribution network

    No full text
    A new technique is presented for automatically identifying the phase connection of domestic customers. Voltage information from a reference three phase house is correlated with voltage information from other customer electricity meters on the same network to determine the highest probability phase connection. The techniques are purely based upon a time series of electrical voltage measurements taken by the household smart meters and no additional equipment is required. The method is demonstrated using real smart meter datasets to correctly identify the phase connections of 75 consumers on a low voltage distribution feeder

    Multi-Agent Systems for Modeling High Penetration Photovoltaic System Impacts in Distribution Networks

    No full text
    This paper reviews the use of multi-agent systems to model the impacts of high levels of photovoltaic (PV) system penetration in distribution networks and presents some preliminary data obtained from the Perth Solar City high penetration PV trial. The Perth Solar City trial consists of a low voltage distribution feeder supplying 75 customers where 29 consumers have roof top photovoltaic systems. Data is collected from smart meters at each consumer premises, from data loggers at the transformer low voltage (LV) side and from a nearby distribution network SCADA measurement point on the highvoltage side (HV) side of the transformer. The data will be usedto progressively develop MAS models

    Verified load flow modelling and scenario simulation of a three-phase four-wire low voltage residential distribution network in Australia

    No full text
    The influx of solar photovoltaic (PV) systems on distribution networks worldwide has presented many challenges for distribution network service providers (DNSPs) including voltage regulation and voltage imbalance in low voltage networks. In Australia, low voltage networks are typically not well monitored and accurate and reliable software models do not exist. As such, the impact of emerging technologies on low voltage networks are not well understood. This paper implements a distribution system load flow method in Matlab to model a section of Queensland DNSP Energex's low voltage network. The model is validated by comparing load flow results to recorded meter data and its use is then demonstrated by performing a scenario simulation whereby the radial network is meshed. It is observed that meshing of radial branches in the modelled network significantly improves voltage regulation and voltage imbalance
    corecore