3,217 research outputs found

    Ultra Fast Nonlinear Optical Tuning of Photonic Crystal Cavities

    Get PDF
    We demonstrate fast (up to 20 GHz), low power (5 μW\mu W) modulation of photonic crystal (PC) cavities in GaAs containing InAs quantum dots. Rapid modulation through blue-shifting of the cavity resonance is achieved via free carrier injection by an above-band picosecond laser pulse. Slow tuning by several linewidths due to laser-induced heating is also demonstrated

    W mass and Triple Gauge Couplings at Tevatron

    No full text
    On behalf of CDF and D0 CollaborationsInternational audienceThe W mass is a crucial parameter in the Standard Model (SM) of particle physics, providing constraints on the mass of the Higgs boson as well as on new physics models via quantum loop corrections. On the other hand, any deviation of the triple gauge boson couplings (TGC) from their values predicted by the SM would be also an indication for new physics. We present recent measurements on W boson mass and searches for anomalous TGC (aTGC) in Wγ, Zγ, WW, WZ and ZZ at Fermilab Tevatron both by CDF and DØ Collaborations. The CDF Collaboration has measured the W boson mass using data corresponding to 2.2 fb−1 of integrated luminosity. The measurement, performed using electron and muon decays of W boson, yields a mass of MW = 80387 ± 19 MeV. The DØ Collaboration has measured MW = 80367 ± 26 MeV with data corresponding to 4.3 fb−1 of integrated luminosity in the channel W → ev. The combination with an earlier DØ result, using independant data sample at 1 fb−1 of integrated luminosity, yields MW = 80375 ± 23 MeV. The limits on anomalous TGCs parameters are consistent with the SM expectations

    W and Z physics at TeVatron

    No full text
    14 pages, XXV Physics in Collision "PIC05", Prague, July 06-09 2005, On behalf of the CDF and D0 Collaborations - On behalf of the CDF and D0 CollaborationsElectroweak measurements performed by CDF and D0 are reported, corresponding to data collected at the centre-of-mass energy of 1.96 TeV with approximately a luminosity of 200pb1200pb^-1. We present measurements of W and Z cross sections and decay asymmetries, recent results in diboson physics with new limits on anomalous couplings, preliminary results on the direct determination of the W width, and preliminary studies for the W mass measurement

    Dynamics of the triple contact line on a non-isothermal heater at partial wetting

    Full text link
    The dynamics of the triple gas-liquid-solid contact line is analysed for the case where the gas is the saturated vapour corresponding to the liquid, like in the vapour bubble in boiling. It is shown that even small superheating (with respect to the saturation temperature) causes evaporation of the adsorption liquid film and the true triple contact is established. It is shown that the hydrodynamic contact line singularity cannot be relaxed with the Navier slip condition under such circumstances. Augmented with the second derivative slip condition is proposed to be applied. For the partial wetting conditions, a non-stationary contact line problem where the contact line motion is caused by evaporation or condensation is treated in the lubrication approximation in the vicinity of the contact line. High heat fluxes in this region require the transient heat conduction inside the heater to be accounted for. Two 2D problems, those of drop retraction with no phase change and of drop evaporation are solved and analysed as illustrations of the proposed approach

    Spectroscopy of nanoscopic semiconductor rings

    Get PDF
    Making use of self-assembly techniques, we demonstrate the realization of nanoscopic semiconductor quantum rings in which the electronic states are in the true quantum limit. We employ two complementary spectroscopic techniques to investigate both the ground states and the excitations of these rings. Applying a magnetic field perpendicular to the plane of the rings, we find that when approximately one flux quantum threads the interior of each ring, a change in the ground state from angular momentum =0\ell = 0 to =1\ell = -1 takes place. This ground state transition is revealed both by a drastic modification of the excitation spectrum and by a change in the magnetic field dispersion of the single-electron charging energy

    Radiative cascades in charged quantum dots

    Full text link
    We measured, for the first time, two photon radiative cascades due to sequential recombination of quantum dot confined electron hole pairs in the presence of an additional spectator charge carrier. We identified direct, all optical cascades involving spin blockaded intermediate states, and indirect cascades, in which non radiative relaxation precedes the second recombination. Our measurements provide also spin dephasing rates of confined carriers.Comment: 4 pages, 3 figure
    corecore