6 research outputs found

    Constraining the Timing of Evolution of Shear Zones in Two Collisional Orogens: Fusing Structural Geology and Geochronology

    Get PDF
    In recent decades, constraining the timing of shear activity has been one of the main topics of research about the tectono-metamorphic evolution of orogenic belts. We present a review of a combined structural and geochronological approach to two major ductile regional shear zones, in two collisional orogens: the first one affecting the Variscan basement in northern Sardinia (Italy) and the External Crystalline Massifs of the Alps (East Variscan Shear Zone; EVSZ), and the second one deforming the medium- to high-grade rocks of the metamorphic core of the Himalaya (High Himalayan Discontinuity). High-resolution, texturally and chemically controlled monazite geochronology applied in separated shear zones of the Variscan belt allowed recognizing a similar timing of activity ranging between c. 340–330 and 300 Ma. This approach led to a better understanding of the evolution of the EVSZ, supporting a model where several branches were active according to a growth by linkage model. Following a similar approach, in situ U-Th-Pb analysis of monazite constrained the timing of top-to-the-S/SW shearing of a regional-scale High Himalayan Discontinuity in the Himalayan belt to between c. 28 Ma and 17 Ma. Earlier exhumation of the hanging wall was triggered by shear zone activity, whereas at the same time, the footwall was still experiencing burial with increasing P-T conditions. The timing of shearing of this shear zone fits with an in-sequence shearing tectonic model for the exhumation of the Himalayan mid-crust

    Structural and metamorphic evolution of a subducted passive margin: insights from the Briançonnais nappes of the Western Alps (Ubaye–Maira valleys, France–Italy)

    No full text
    Abstract This contribution analyses the structural architecture and tectono-metamorphic evolution of Briançonnais units in the southern French-Italian Western Alps. The studied area extends from a virtually non-metamorphic area adjacent to the Helvetic-Dauphinois External Domain in the west to the Monviso-Queyras ocean-derived units in the east, where metamorphism increases up to eclogite-facies. Mapping at the scale 1:10.000 of a mountainous part of the Ubaye-Maira transect was performed, which portrays in detail the Briançonnais units over ~ 100 km2. The lithologies include meta-andesite, meta-siliciclastics, marbles, turbiditic calcschists and flysch whose age spans from Late Carboniferous to Eocene. Metamorphism is low-grade greenschist-facies in the west but reaches the blueschist-facies to the east. Structures related to four phases of deformation are identified. The first two generations of structures (D1–D2), related to the original top-to-the-west nappe stacking, are associated with conditions close to the peak of Alpine metamorphism. Previous tectonic surfaces are transposed by the dominant deformation structures (D3), developed under retrograde/decompression conditions. This D3 corresponds to a backfolding and back-thrusting event with a top-to-the-E transport. A fourth phase (D4) developed during late low-grade metamorphic conditions and deforms the previous surfaces by locally developing a crenulation cleavage, followed by brittle tectonics. An updated metamorphic map is presented, backed on published estimates and new thermometric data obtained by Raman Spectroscopy of Carbonaceous Material (RSCM). The TRSCM values range from ~ 295 °C to > 350 °C, moving from the most external Briançonnais unit to the internal Queyras “Schistes Lustrés” units. Suspected Upper Cretaceous palaeofaults have been documented, allowing us to group the classic Aiguille de Mary and Ceillac (sub-) units into a single tectonic unit, here referred to as Maurin unit. The palaeogeographical reconstruction of the evolution of the studied transect highlights the importance of the Marinet and Maurin axial units in the feeding of the Late Cretaceous-Eocene breccias deposited on the more internal Acceglio-type units

    Timing and kinematics of flow in a transpressive dextral shear zone, Maures Massif (Southern France)

    Get PDF
    International audienceThe Maures–Tanneron Massif and the Corsica–Sardinia Block are two segments of the southern European Variscan belt that separated during the Late Oligocene–Miocene due to the opening of the Western Mediterranean basin. Correlation between the two regions, based mainly on petrologic similarities, is still debated. However, there are no detailed structural and petrochronological constraints on their potential relationships. In northern Sardinia there is well-documented evidence for a dextral transpressive shear zone that initiated after the first stage of frontal collision. In the Maures–Tanneron Massif, despite recognition of an important episode of transpressive deformation, it is still unclear which structures were active during this tectonic regime. We investigate in detail the kinematic of flow, finite strain and the timing of the deformation of the Cavalaire “Fault” (CF), a major ductile shear zone in the Maures–Tanneron Massif. In contrast to previous models, we argue that the CF is a transpressive shear zone characterized by a prevalent component of pure shear, while in-situ monazite geochronology reveals that the CF is initiated at ~ 323 Ma. The new data presented here, based on a multidisciplinary approach document, for the first time, the vorticity of the flow, finite strain and timing of this sector of the East Variscan Shear Zone, a regional-scale shear zone that characterized the Southern European Variscan belt during the late Carboniferous

    Advanced Underwater Acoustic Networking and Cooperation of Multiple Marine Robots

    No full text
    In this paper we present the initial imple- mentation of an advanced communication and networking solution that can enable the coordination and cooperation of autonomous mobile marine robots. To enable such a heterogeneous network three main research areas have been blended: 1) communications, 2) networking, and 3) decentralized cooperative localization and control. This paper focuses on the first two components and addresses the integration of the third one. Due to the challenges of the underwater environment, novel communication software and hardware have to be investigated to provide the level of flexibility and features that are required for efficient networking and robots cooperation. Robust and reliable distributed networking protocols have to be developed and implemented to enable an efficient sharing of data and control messages among heterogeneous surface and underwater platforms. Moreover, the combination of com- munications, networking and cooperative navigation has to be addressed in order to develop more capable, distributed and efficient underwater systems
    corecore