7 research outputs found

    Accuracy of recovered moments for narrow mobility distributions obtained with commonly used inversion algorithms for mobility size spectrometers

    No full text
    <p>Aerosol mobility size spectrometers are commonly used to measure size distributions of submicrometer aerosol particles. Commonly used data inversion algorithms for these instruments assume that the measured mobility distribution is broad relative to the DMA transfer function. This article theoretically examines errors that are incurred for input distributions of any width with an emphasis on those with mobility widths comparable to that of the DMA's transfer function. Our analysis is valid in the limit of slow scan rates, and is applicable to the interpretation of measurements such as those obtained with tandem differential mobility analyzers as well as broader distributions. The analysis leads to expressions that show the relationship between the inverted number concentration, mean size, and standard deviation and true values of those parameters. For narrow distributions (e.g., for a mobility distribution produced by a DMA with a 1:10 aerosol:sheath air flow ratio) under typical operating conditions, number concentrations and mean mobility obtained with inversion algorithms are accurate to within 0.5% and 1.0%, respectively. This corresponds to mean diameter retrieval errors of 1.0% for large particles and 0.5% for small (kinetic regime) particles. The widths (i.e., relative mobility variance) of the inverted distributions, however, significantly exceed the true values.</p> <p>Copyright © 2018 American Association for Aerosol Research</p

    Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers

    No full text
    Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometer

    The Bipolar Diffusion Charging of Nanoparticles: A Review and Development of Approaches for Non-Spherical Particles

    No full text
    <p>Theoretical and experimental analyses of the steady state, bipolar diffusion charge distribution on nanoparticles are reviewed. This charge distribution plays a critical role in electrical mobility measurements of nanoparticle size distribution functions, where it is approximated via empirical regression equations. While the regression approach has been broadly successful, there remain several unresolved issues related to charge distribution calculations. Specifically, research to date has not revealed a method to reliably calculate nanoparticle-ion collision rates in the presence of strong attractive potentials, charge distribution predictions do not routinely consider the mass and (electrical) mobility distributions of the charging ions, and calculation approaches applicable to both spherical and nonspherical particles have not been compared to experimental data. In light of these issues, we examine the steady-state bipolar charge distribution on gold nanospheres and gold nanorods via tandem differential mobility analysis (TDMA). We compare measurements to regression equations as well as to Brownian Dynamics (BD) simulations, which take ion mobility and mass distributions as inputs. These distributions were measured using a DMA coupled to a mass spectrometer. Both regression equations and BD simulations are found to agree reasonably well with measurements in air, and we find that particle mobility diameter has a much greater influence on charging than particle morphology. Results support the use of BD calculations to predict bipolar charge distributions when ion properties are known. Nevertheless, our work supports continued use of regression equations when such information is not available.</p> <p>Copyright © 2015 American Association for Aerosol Research</p

    Mobility Analysis of 2 nm to 11 nm Aerosol Particles with an Aspirating Drift Tube Ion Mobility Spectrometer

    No full text
    <div><p>We describe the performance of a drift tube-ion mobility spectrometry (DT-IMS) instrument for the measurement of aerosol particles. In DT-IMS, the electrical mobility of a measured particle is inferred directly from the time required for the particle to traverse a drift region, with motion driven by an electrostatic field. Electrical mobility distributions are hence linked to arrival time distributions (ATDs) for particles reaching a detector downstream of the drift region. The developed instrument addresses two obstacles that have limited DT-IMS use for aerosol measurement previously: (1) conventional drift tubes cannot efficiently sample charged particles at ground potential and (2) the sensitivities of commonly used Faraday plate detectors are too low for most aerosols. Obstacle (1) is circumvented by creating a “sample volume” of aerosol for measurement, defined by the streamlines of fluid flow. Obstacle (2) is bypassed by interfacing the end of the drift region with a condensation particle counter. The DT-IMS prototype shows high linearity for arrival time versus inverse electrical mobility (<i>R</i><sup>2</sup> > 0.99) over the size range tested (2.2–11.1 nm), and measurements compare well with both analytical and numerical models of device performance. A dimensionless calibration curve linking drift time to inverse electrical mobility is developed. In less than 5 s, it is possible to measure 11.1 nm particles, while 2.2 nm particles are analyzable on a subsecond scale. The transmission efficiency is found to be dependent upon electrostatic deposition for short drift times and upon advective losses for long drift times.</p> <p>Copyright 2014 American Association for Aerosol Research</p> </div

    Characterization of nanosized silica size standards

    No full text
    <p>Nanosized silica size standards produced with a sol–gel synthesis process were evaluated for particle size, effective density, and refractive index in this study. Particle size and effective density measurements were conducted following protocol from the National Institute of Advanced Industrial Science and Technology (AIST) in Japan. Particle sizes were measured via electrical mobility analysis using a differential mobility analyzer (DMA) at sheath flow rates (<i>Q</i><sub>sh</sub>) of 3.0 and 6.0 L/min and a constant aerosol flow rate (<i>Q</i><sub>a</sub>) of 0.3 L/min. The measured mean and mode diameters agreed well with the labeled sizes in the size range 40–200 nm, with differences ranging from 0.03% to 0.8%, well within the labeled expanded uncertainties (95% confidence intervals) of 1.8%–2.2%. The coefficient of variation (CV) of the size distribution was 0.012–0.027 for 40–200 nm. Particle sizes measured for 20 nm and 30 nm standards showed size differences with respect to the certified sizes of 1.7% and 8.3% at <i>Q</i><sub>sh</sub> = 6.0 L/min, but the size distributions were narrow, with CV = 0.047–0.064. The average effective density for the range 40–200 nm measured with an aerosol particle mass analyzer (APM) was 1.9 g/cm<sup>3</sup>. The real component of the refractive index measured with an optical particle counter (OPC) was 1.41 at a wavelength of 633 nm. All properties (size, effective density, and refractive index) were stable and could be measured with good repeatability. From these evaluations, it was found that the nanosized silica size standards have good characteristics for use as size standards and constitute a feasible alternative to PSL particles.</p> <p>© 2017 American Association for Aerosol Research</p

    Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate

    No full text
    <p>Bipolar diffusion charging is used routinely in aerosol electrical mobility size distribution measurements. In this study, aerosol charge fractions produced by six bipolar chargers (neutralizers) were measured using a tandem differential mobility analyzer system. Factors that were studied include the type of ion source (<sup>210</sup>Po, <sup>85</sup>Kr, <sup>241</sup>Am, and soft X-ray), source activity, charger design, and aerosol flowrate. It was found that all six types of neutralizers achieve stationary state charge distributions when the source activity is sufficiently high. For <sup>210</sup>Po neutralizers with an initial radioactivity of 18.5 MBq (0.5 mCi), stationary state charge distributions are achieved when the source is less than 3.25 years old (residual activity no less than 0.0527 MBq). Stationary state was achieved for <sup>85</sup>Kr neutralizers having residual radioactivity greater than 70 MBq. Source activities of <sup>241</sup>Am and soft X-ray neutralizers are discussed. Aerosol charge fractions for six neutralizers remain reasonably invariant over a wide range of flowrates. The positive charge fractions achieved by the soft X-ray neutralizer are higher than those by the other five neutralizers using radioactive sources while negative charge fractions for all neutralizers studied are all in a similar range. This study also raises questions about bipolar charging fractions used for data inversion in some scanning mobility particle spectrometer (SMPS) systems, and underscores the need to better understand bipolar charging to achieve more accurate measurements of particle size distributions.</p> <p>Copyright 2014 American Association for Aerosol Research</p
    corecore