90 research outputs found

    A Ring of Warm Dust in the HD 32297 Debris Disk

    Full text link
    We report the detection of a ring of warm dust in the edge-on disk surrounding HD 32297 with the Gemini-N/MICHELLE mid-infrared imager. Our N'-band image shows elongated structure consistent with the orientation of the scattered-light disk. The Fnu(11.2 um) = 49.9+/-2.1 mJy flux is significantly above the 28.2+/-0.6 mJy photosphere. Subtraction of the stellar point spread function reveals a bilobed structure with peaks 0.5"-0.6" from the star. An analysis of the stellar component of the SED suggests a spectral type later than A0, in contrast to commonly cited literature values. We fit three-dimensional, single-size grain models of an optically thin dust ring to our image and the SED using a Markov chain Monte Carlo algorithm in a Bayesian framework. The best-fit effective grain sizes are submicron, suggesting the same dust population is responsible for the bulk of the scattered light. The inner boundary of the warm dust is located 0.5"-0.7" (~65 AU) from the star, which is approximately cospatial with the outer boundary of the scattered-light asymmetry inward of 0.5". The addition of a separate component of larger, cooler grains that provide a portion of the 60 um flux improves both the fidelity of the model fit and consistency with the slopes of the scattered-light brightness profiles. Previous indirect estimates of the stellar age (~30 Myr) indicate the dust is composed of debris. The peak vertical optical depths in our models (~0.3-1 x 1e-2) imply that grain-grain collisions likely play a significant role in dust dynamics and evolution. Submicron grains can survive radiation pressure blow-out if they are icy and porous. Similarly, the inferred warm temperatures (130-200 K) suggest that ice sublimation may play a role in truncating the inner disk.Comment: ApJ accepted, 8 pages, 4 figure

    A Search for Exozodiacal Dust and Faint Companions Near Sirius, Procyon, and Altair with the NICMOS Coronagraph

    Get PDF
    We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. We did not achieve enough dynamic range to surpass the upper limits set by IRAS on the amount of exo-zodiacal dust in these systems, but we did set strong upper limits on the presence of nearby late-type and sub-stellar companions.Comment: 10 pages, 4 figure

    Precision Masses of the low-mass binary system GJ 623

    Get PDF
    We have used Aperture Masking Interferometry and Adaptive Optics (AO) at the Palomar 200'' to obtain precise mass measurements of the binary M dwarf GJ 623. AO observations spread over 3 years combined with a decade of radial velocity measurements constrain all orbital parameters of the GJ 623 binary system accurately enough to critically challenge the models. The dynamical masses measured are m_{1}=0.371\pm0.015 M_{\sun} (4%) and m_{2}=0.115\pm0.0023 M_{\sun} (2%) for the primary and the secondary respectively. Models are not consistent with color and mass, requiring very low metallicities.Comment: 7 pages, 5 figures. Accepted for Ap

    Discovery of a Bright Field Methane (T-type) Brown Dwarf by 2MASS

    Get PDF
    We report the discovery of a bright (J = 13.83±\pm0.03) methane brown dwarf, or T dwarf, by the Two Micron All Sky Survey. This object, 2MASSI J0559191-140448, is the first brown dwarf identified by the newly commissioned CorMASS instrument mounted on the Palomar 60-inch Telescope. Near-infrared spectra from 0.9 - 2.35 \micron show characteristic CH4_4 bands at 1.1, 1.3, 1.6, and 2.2 \micron, which are significantly shallower than those seen in other T dwarfs discovered to date. Coupled with the detection of an FeH band at 0.9896 \micron and two sets of K I doublets at J-band, we propose that 2MASS J0559-14 is a warm T dwarf, close to the transition between L and T spectral classes. The brightness of this object makes it a good candidate for detailed investigation over a broad wavelength regime and at higher resolution.Comment: 21 pages, 3 figures, 2 tables, accepted to AJ for publication August 200

    Discovery of an Unbound Hyper-Velocity Star in the Milky Way Halo

    Full text link
    We have discovered a star, SDSS J090745.0+024507, leaving the Galaxy with a heliocentric radial velocity of +853+-12 km/s, the largest velocity ever observed in the Milky Way halo. The star is either a hot blue horizontal branch star or a B9 main sequence star with a heliocentric distance ~55 kpc. Corrected for the solar reflex motion and to the local standard of rest, the Galactic rest-frame velocity is +709 km/s. Because its radial velocity vector points 173.8 deg from the Galactic center, we suggest that this star is the first example of a hyper-velocity star ejected from the Galactic center as predicted by Hills and later discussed by Yu & Tremaine. The star has [Fe/H]~0, consistent with a Galactic center origin, and a travel time of <80 Myr from the Galactic center, consistent with its stellar lifetime. If the star is indeed traveling from the Galactic center, it should have a proper motion of 0.3 mas/yr observable with GAIA. Identifying additional hyper-velocity stars throughout the halo will constrain the production rate history of hyper-velocity stars at the Galactic center.Comment: 4 pages, submitted to ApJ Letter

    NMR-based assignment of isoleucine vs allo-isoleucine stereochemistry

    Get PDF
    A simple 1H and 13C NMR spectrometric analysis is demonstrated that permits differentiation of isoleucine and allo-isoleucine residues by inspection of the chemical shift and coupling constants of the signals associated with the proton and carbon at the α-stereocentre. This is applied to the estimation of epimerisation during metal-free N-arylation and peptide coupling reactions

    Spitzer Infrared Spectrograph Observations of M, L, and T Dwarfs

    Full text link
    We present the first mid-infrared spectra of brown dwarfs, together with observations of a low-mass star. Our targets are the M3.5 dwarf GJ 1001A, the L8 dwarf DENIS-P J0255-4700, and the T1/T6 binary system epsilon Indi Ba/Bb. As expected, the mid-infrared spectral morphology of these objects changes rapidly with spectral class due to the changes in atmospheric chemistry resulting from their differing effective temperatures and atmospheric structures. By taking advantage of the unprecedented sensitivity of the Infrared Spectrograph on the Spitzer Space Telescope we have detected the 7.8 micron methane and 10 micron ammonia bands for the first time in brown dwarf spectra.Comment: 4 pages, 2 figure

    Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low Mass White Dwarfs

    Full text link
    We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H] ~ 0.4) open clusters in our Galaxy, and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster, using Keck/LRIS spectra, suggests that most of these stars are undermassive, = 0.43 +/- 0.06 Msun, and therefore could not have formed from canonical stellar evolution involving the helium flash at the tip of the red giant branch. We show that at least 40% of NGC 6791's evolved stars must have lost enough mass on the red giant branch to avoid the flash, and therefore did not convert helium into carbon-oxygen in their core. Such increased mass loss in the evolution of the progenitors of these stars is consistent with the presence of the extreme horizontal branch in the CMD. This unique stellar evolutionary channel also naturally explains the recent finding of a very young age (2.4 Gyr) for NGC 6791 from white dwarf cooling theory; helium core white dwarfs in this cluster will cool ~3 times slower than carbon-oxygen core stars and therefore the corrected white dwarf cooling age is in fact ~7 Gyr, consistent with the well measured main-sequence turnoff age. These results provide direct empirical evidence that mass loss is much more efficient in high metallicity environments and therefore may be critical in interpreting the ultraviolet upturn in elliptical galaxies.Comment: 15 pages, 9 figures, 2 tables. Accepted for publication in Astrophys. J. Very minor changes from first versio

    Two New Candidate Planets in Eccentric Orbits

    Get PDF
    Doppler measurements of two G-type main-sequence stars, HD210277 and HD168443, reveal Keplerian variations that imply the presence of companions with masses (M sin i) of 1.28 and 5.04 M_Jup and orbital periods of 437 d and 58 d, respectively. The orbits have large eccentricities of e=0.45 and e=0.54, respectively. All 9 known extrasolar planet candidates with a=0.2-2.5 AU have orbital eccentricities greater than 0.1, higher than that of Jupiter (e=0.05). Eccentric orbits may result from gravitational perturbations imposed by other orbiting planets or stars, by passing stars in the dense star-forming cluster, or by the protoplanetary disk. Based on published studies and our near-IR adaptive optics images, HD210277 appears to be a single star. However, HD168443 exhibits a long-term velocity trend consistent with a close stellar companion, as yet undetected directly.Comment: AASTeX, 31 pages including 10 Postscript figures, to appear in the Astrophysical Journal (July 1999

    Moderate Resolution Spitzer Infrared Spectrograph (IRS) Observations of M, L, and T Dwarfs

    Full text link
    We present 10 - 19 um moderate resolution spectra of ten M dwarfs, one L dwarf, and two T dwarf systems obtained with the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope. The IRS allows us to examine molecular spectroscopic features/lines at moderate spectral resolution in a heretofore untapped wavelength regime. These R~600 spectra allow for a more detailed examination of clouds, non-equilibrium chemistry, as well as the molecular features of H2O, NH3, and other trace molecular species that are the hallmarks of these objects. A cloud-free model best fits our mid-infrared spectrum of the T1 dwarf epsilon Indi Ba, and we find that the NH3 feature in epsilon Indi Bb is best explained by a non-equilibrium abundance due to vertical transport in its atmosphere. We examined a set of objects (mostly M dwarfs) in multiple systems to look for evidence of emission features, which might indicate an atmospheric temperature inversion, as well as trace molecular species; however, we found no evidence of either.Comment: 19 pages, 7 figures, accepted ApJ 1/12/0
    corecore