4,822 research outputs found

    Event-Clock Nested Automata

    Full text link
    In this paper we introduce and study Event-Clock Nested Automata (ECNA), a formalism that combines Event Clock Automata (ECA) and Visibly Pushdown Automata (VPA). ECNA allow to express real-time properties over non-regular patterns of recursive programs. We prove that ECNA retain the same closure and decidability properties of ECA and VPA being closed under Boolean operations and having a decidable language-inclusion problem. In particular, we prove that emptiness, universality, and language-inclusion for ECNA are EXPTIME-complete problems. As for the expressiveness, we have that ECNA properly extend any previous attempt in the literature of combining ECA and VPA

    Complexity of ITL model checking: some well-behaved fragments of the interval logic HS

    Full text link
    Model checking has been successfully used in many computer science fields, including artificial intelligence, theoretical computer science, and databases. Most of the proposed solutions make use of classical, point-based temporal logics, while little work has been done in the interval temporal logic setting. Recently, a non-elementary model checking algorithm for Halpern and Shoham's modal logic of time intervals HS over finite Kripke structures (under the homogeneity assumption) and an EXPSPACE model checking procedure for two meaningful fragments of it have been proposed. In this paper, we show that more efficient model checking procedures can be developed for some expressive enough fragments of HS

    An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks

    Full text link
    The automotive industry is rapidly evolving towards connected and autonomous vehicles, whose ever more stringent data traffic requirements might exceed the capacity of traditional technologies for vehicular networks. In this scenario, densely deploying millimeter wave (mmWave) base stations is a promising approach to provide very high transmission speeds to the vehicles. However, mmWave signals suffer from high path and penetration losses which might render the communication unreliable and discontinuous. Coexistence between mmWave and Long Term Evolution (LTE) communication systems has therefore been considered to guarantee increased capacity and robustness through heterogeneous networking. Following this rationale, we face the challenge of designing fair and efficient attachment policies in heterogeneous vehicular networks. Traditional methods based on received signal quality criteria lack consideration of the vehicle's individual requirements and traffic demands, and lead to suboptimal resource allocation across the network. In this paper we propose a Quality-of-Service (QoS) aware attachment scheme which biases the cell selection as a function of the vehicular service requirements, preventing the overload of transmission links. Our simulations demonstrate that the proposed strategy significantly improves the percentage of vehicles satisfying application requirements and delivers efficient and fair association compared to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent Vehicles Symposiu

    Thrust vectoring for lateral-directional stability

    Get PDF
    The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented

    Explosive synchronization enhanced by time-delayed coupling

    Full text link
    We study the emergence of synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and a time delay is included in the system. This assumption allows enhancing the explosive transition to reach the synchronous state. We provide an analytical treatment developed in a star graph which reproduces results obtained in scale-free networks. Our findings have important implications in understanding the synchronization of complex networks, since the time delay is present in most systems due to the finite speed of the signal transmission over a distance.Comment: 5 pages, 7 figure

    Complexity of Timeline-Based Planning over Dense Temporal Domains: Exploring the Middle Ground

    Get PDF
    In this paper, we address complexity issues for timeline-based planning over dense temporal domains. The planning problem is modeled by means of a set of independent, but interacting, components, each one represented by a number of state variables, whose behavior over time (timelines) is governed by a set of temporal constraints (synchronization rules). While the temporal domain is usually assumed to be discrete, here we consider the dense case. Dense timeline-based planning has been recently shown to be undecidable in the general case; decidability (NP-completeness) can be recovered by restricting to purely existential synchronization rules (trigger-less rules). In this paper, we investigate the unexplored area of intermediate cases in between these two extremes. We first show that decidability and non-primitive recursive-hardness can be proved by admitting synchronization rules with a trigger, but forcing them to suitably check constraints only in the future with respect to the trigger (future simple rules). More "tractable" results can be obtained by additionally constraining the form of intervals in future simple rules: EXPSPACE-completeness is guaranteed by avoiding singular intervals, PSPACE-completeness by admitting only intervals of the forms [0,a] and [b,∞\infty[.Comment: In Proceedings GandALF 2018, arXiv:1809.0241
    • …
    corecore