4,822 research outputs found
Event-Clock Nested Automata
In this paper we introduce and study Event-Clock Nested Automata (ECNA), a
formalism that combines Event Clock Automata (ECA) and Visibly Pushdown
Automata (VPA). ECNA allow to express real-time properties over non-regular
patterns of recursive programs. We prove that ECNA retain the same closure and
decidability properties of ECA and VPA being closed under Boolean operations
and having a decidable language-inclusion problem. In particular, we prove that
emptiness, universality, and language-inclusion for ECNA are EXPTIME-complete
problems. As for the expressiveness, we have that ECNA properly extend any
previous attempt in the literature of combining ECA and VPA
Complexity of ITL model checking: some well-behaved fragments of the interval logic HS
Model checking has been successfully used in many computer science fields,
including artificial intelligence, theoretical computer science, and databases.
Most of the proposed solutions make use of classical, point-based temporal
logics, while little work has been done in the interval temporal logic setting.
Recently, a non-elementary model checking algorithm for Halpern and Shoham's
modal logic of time intervals HS over finite Kripke structures (under the
homogeneity assumption) and an EXPSPACE model checking procedure for two
meaningful fragments of it have been proposed. In this paper, we show that more
efficient model checking procedures can be developed for some expressive enough
fragments of HS
An Efficient Requirement-Aware Attachment Policy for Future Millimeter Wave Vehicular Networks
The automotive industry is rapidly evolving towards connected and autonomous
vehicles, whose ever more stringent data traffic requirements might exceed the
capacity of traditional technologies for vehicular networks. In this scenario,
densely deploying millimeter wave (mmWave) base stations is a promising
approach to provide very high transmission speeds to the vehicles. However,
mmWave signals suffer from high path and penetration losses which might render
the communication unreliable and discontinuous. Coexistence between mmWave and
Long Term Evolution (LTE) communication systems has therefore been considered
to guarantee increased capacity and robustness through heterogeneous
networking. Following this rationale, we face the challenge of designing fair
and efficient attachment policies in heterogeneous vehicular networks.
Traditional methods based on received signal quality criteria lack
consideration of the vehicle's individual requirements and traffic demands, and
lead to suboptimal resource allocation across the network. In this paper we
propose a Quality-of-Service (QoS) aware attachment scheme which biases the
cell selection as a function of the vehicular service requirements, preventing
the overload of transmission links. Our simulations demonstrate that the
proposed strategy significantly improves the percentage of vehicles satisfying
application requirements and delivers efficient and fair association compared
to state-of-the-art schemes.Comment: 8 pages, 8 figures, 2 tables, accepted to the 30th IEEE Intelligent
Vehicles Symposiu
Thrust vectoring for lateral-directional stability
The advantages and disadvantages of using thrust vectoring for lateral-directional control and the effects of reducing the tail size of a single-engine aircraft were investigated. The aerodynamic characteristics of the F-16 aircraft were generated by using the Aerodynamic Preliminary Analysis System II panel code. The resulting lateral-directional linear perturbation analysis of a modified F-16 aircraft with various tail sizes and yaw vectoring was performed at several speeds and altitudes to determine the stability and control trends for the aircraft compared to these trends for a baseline aircraft. A study of the paddle-type turning vane thrust vectoring control system as used on the National Aeronautics and Space Administration F/A-18 High Alpha Research Vehicle is also presented
Explosive synchronization enhanced by time-delayed coupling
We study the emergence of synchronization in scale-free networks by
considering the Kuramoto model of coupled phase oscillators. The natural
frequencies of oscillators are assumed to be correlated with their degrees and
a time delay is included in the system. This assumption allows enhancing the
explosive transition to reach the synchronous state. We provide an analytical
treatment developed in a star graph which reproduces results obtained in
scale-free networks. Our findings have important implications in understanding
the synchronization of complex networks, since the time delay is present in
most systems due to the finite speed of the signal transmission over a
distance.Comment: 5 pages, 7 figure
Complexity of Timeline-Based Planning over Dense Temporal Domains: Exploring the Middle Ground
In this paper, we address complexity issues for timeline-based planning over
dense temporal domains. The planning problem is modeled by means of a set of
independent, but interacting, components, each one represented by a number of
state variables, whose behavior over time (timelines) is governed by a set of
temporal constraints (synchronization rules). While the temporal domain is
usually assumed to be discrete, here we consider the dense case. Dense
timeline-based planning has been recently shown to be undecidable in the
general case; decidability (NP-completeness) can be recovered by restricting to
purely existential synchronization rules (trigger-less rules). In this paper,
we investigate the unexplored area of intermediate cases in between these two
extremes. We first show that decidability and non-primitive recursive-hardness
can be proved by admitting synchronization rules with a trigger, but forcing
them to suitably check constraints only in the future with respect to the
trigger (future simple rules). More "tractable" results can be obtained by
additionally constraining the form of intervals in future simple rules:
EXPSPACE-completeness is guaranteed by avoiding singular intervals,
PSPACE-completeness by admitting only intervals of the forms [0,a] and
[b,[.Comment: In Proceedings GandALF 2018, arXiv:1809.0241
- …