1,192 research outputs found

    GENOME-WIDE ASSOCIATION OF CORONARY ARTERY DISEASE

    Get PDF

    Statistical Viewer: a tool to upload and integrate linkage and association data as plots displayed within the Ensembl genome browser

    Get PDF
    BACKGROUND: To facilitate efficient selection and the prioritization of candidate complex disease susceptibility genes for association analysis, increasingly comprehensive annotation tools are essential to integrate, visualize and analyze vast quantities of disparate data generated by genomic screens, public human genome sequence annotation and ancillary biological databases. We have developed a plug-in package for Ensembl called "Statistical Viewer" that facilitates the analysis of genomic features and annotation in the regions of interest defined by linkage analysis. RESULTS: Statistical Viewer is an add-on package to the open-source Ensembl Genome Browser and Annotation System that displays disease study-specific linkage and/or association data as 2 dimensional plots in new panels in the context of Ensembl's Contig View and Cyto View pages. An enhanced upload server facilitates the upload of statistical data, as well as additional feature annotation to be displayed in DAS tracts, in the form of Excel Files. The Statistical View panel, drawn directly under the ideogram, illustrates lod score values for markers from a study of interest that are plotted against their position in base pairs. A module called "Get Map" easily converts the genetic locations of markers to genomic coordinates. The graph is placed under the corresponding ideogram features a synchronized vertical sliding selection box that is seamlessly integrated into Ensembl's Contig- and Cyto- View pages to choose the region to be displayed in Ensembl's "Overview" and "Detailed View" panels. To resolve Association and Fine mapping data plots, a "Detailed Statistic View" plot corresponding to the "Detailed View" may be displayed underneath. CONCLUSION: Features mapping to regions of linkage are accentuated when Statistic View is used in conjunction with the Distributed Annotation System (DAS) to display supplemental laboratory information such as differentially expressed disease genes in private data tracks. Statistic View is a novel and powerful visual feature that enhances Ensembl's utility as valuable resource for integrative genomic-based approaches to the identification of candidate disease susceptibility genes. At present there are no other tools that provide for the visualization of 2-dimensional plots of quantitative data scores against genomic coordinates in the context of a primary public genome annotation browser

    Combinatorial Mismatch Scan (CMS) for loci associated with dementia in the Amish

    Get PDF
    BACKGROUND: Population heterogeneity may be a significant confounding factor hampering detection and verification of late onset Alzheimer's disease (LOAD) susceptibility genes. The Amish communities located in Indiana and Ohio are relatively isolated populations that may have increased power to detect disease susceptibility genes. METHODS: We recently performed a genome scan of dementia in this population that detected several potential loci. However, analyses of these data are complicated by the highly consanguineous nature of these Amish pedigrees. Therefore we applied the Combinatorial Mismatch Scanning (CMS) method that compares identity by state (IBS) (under the presumption of identity by descent (IBD)) sharing in distantly related individuals from such populations where standard linkage and association analyses are difficult to implement. CMS compares allele sharing between individuals in affected and unaffected groups from founder populations. Comparisons between cases and controls were done using two Fisher's exact tests, one testing for excess in IBS allele frequency and the other testing for excess in IBS genotype frequency for 407 microsatellite markers. RESULTS: In all, 13 dementia cases and 14 normal controls were identified who were not related at least through the grandparental generation. The examination of allele frequencies identified 24 markers (6%) nominally (p ≤ 0.05) associated with dementia; the most interesting (empiric p ≤ 0.005) markers were D3S1262, D5S211, and D19S1165. The examination of genotype frequencies identified 21 markers (5%) nominally (p ≤ 0.05) associated with dementia; the most significant markers were both located on chromosome 5 (D5S1480 and D5S211). Notably, one of these markers (D5S211) demonstrated differences (empiric p ≤ 0.005) under both tests. CONCLUSION: Our results provide the initial groundwork for identifying genes involved in late-onset Alzheimer's disease within the Amish community. Genes identified within this isolated population will likely play a role in a subset of late-onset AD cases across more general populations. Regions highlighted by markers demonstrating suggestive allelic and/or genotypic differences will be the focus of more detailed examination to characterize their involvement in dementia

    Analysis of brain region-specific co-expression networks reveals clustering of established and novel genes associated with Alzheimer disease

    Get PDF
    BACKGROUND: Identifying and understanding the functional role of genetic risk factors for Alzheimer disease (AD) has been complicated by the variability of genetic influences across brain regions and confounding with age-related neurodegeneration. METHODS: A gene co-expression network was constructed using data obtained from the Allen Brain Atlas for multiple brain regions (cerebral cortex, cerebellum, and brain stem) in six individuals. Gene network analyses were seeded with 52 reproducible (i.e., established) AD (RAD) genes. Genome-wide association study summary data were integrated with the gene co-expression results and phenotypic information (i.e., memory and aging-related outcomes) from gene knockout studies in Drosophila to generate rankings for other genes that may have a role in AD. RESULTS: We found that co-expression of the RAD genes is strongest in the cortical regions where neurodegeneration due to AD is most severe. There was significant evidence for two novel AD-related genes including EPS8 (FDR p = 8.77 × 10−3) and HSPA2 (FDR p = 0.245). CONCLUSIONS: Our findings indicate that AD-related risk factors are potentially associated with brain region-specific effects on gene expression that can be detected using a gene network approach.Published versio

    A noise-reduction GWAS analysis implicates altered regulation of neurite outgrowth and guidance in autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome-wide Association Studies (GWAS) have proved invaluable for the identification of disease susceptibility genes. However, the prioritization of candidate genes and regions for follow-up studies often proves difficult due to false-positive associations caused by statistical noise and multiple-testing. In order to address this issue, we propose the novel GWAS noise reduction (GWAS-NR) method as a way to increase the power to detect true associations in GWAS, particularly in complex diseases such as autism.</p> <p>Methods</p> <p>GWAS-NR utilizes a linear filter to identify genomic regions demonstrating correlation among association signals in multiple datasets. We used computer simulations to assess the ability of GWAS-NR to detect association against the commonly used joint analysis and Fisher's methods. Furthermore, we applied GWAS-NR to a family-based autism GWAS of 597 families and a second existing autism GWAS of 696 families from the Autism Genetic Resource Exchange (AGRE) to arrive at a compendium of autism candidate genes. These genes were manually annotated and classified by a literature review and functional grouping in order to reveal biological pathways which might contribute to autism aetiology.</p> <p>Results</p> <p>Computer simulations indicate that GWAS-NR achieves a significantly higher classification rate for true positive association signals than either the joint analysis or Fisher's methods and that it can also achieve this when there is imperfect marker overlap across datasets or when the closest disease-related polymorphism is not directly typed. In two autism datasets, GWAS-NR analysis resulted in 1535 significant linkage disequilibrium (LD) blocks overlapping 431 unique reference sequencing (RefSeq) genes. Moreover, we identified the nearest RefSeq gene to the non-gene overlapping LD blocks, producing a final candidate set of 860 genes. Functional categorization of these implicated genes indicates that a significant proportion of them cooperate in a coherent pathway that regulates the directional protrusion of axons and dendrites to their appropriate synaptic targets.</p> <p>Conclusions</p> <p>As statistical noise is likely to particularly affect studies of complex disorders, where genetic heterogeneity or interaction between genes may confound the ability to detect association, GWAS-NR offers a powerful method for prioritizing regions for follow-up studies. Applying this method to autism datasets, GWAS-NR analysis indicates that a large subset of genes involved in the outgrowth and guidance of axons and dendrites is implicated in the aetiology of autism.</p

    SNPs in Multi-Species Conserved Sequences (MCS) as useful markers in association studies: a practical approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although genes play a key role in many complex diseases, the specific genes involved in most complex diseases remain largely unidentified. Their discovery will hinge on the identification of key sequence variants that are conclusively associated with disease. While much attention has been focused on variants in protein-coding DNA, variants in noncoding regions may also play many important roles in complex disease by altering gene regulation. Since the vast majority of noncoding genomic sequence is of unknown function, this increases the challenge of identifying "functional" variants that cause disease. However, evolutionary conservation can be used as a guide to indicate regions of noncoding or coding DNA that are likely to have biological function, and thus may be more likely to harbor SNP variants with functional consequences. To help bias marker selection in favor of such variants, we devised a process that prioritizes annotated SNPs for genotyping studies based on their location within Multi-species Conserved Sequences (MCSs) and used this process to select SNPs in a region of linkage to a complex disease. This allowed us to evaluate the utility of the chosen SNPs for further association studies. Previously, a region of chromosome 1q43 was linked to Multiple Sclerosis (MS) in a genome-wide screen. We chose annotated SNPs in the region based on location within MCSs (termed MCS-SNPs). We then obtained genotypes for 478 MCS-SNPs in 989 individuals from MS families.</p> <p>Results</p> <p>Analysis of our MCS-SNP genotypes from the 1q43 region and comparison to HapMap data confirmed that annotated SNPs in MCS regions are frequently polymorphic and show subtle signatures of selective pressure, consistent with previous reports of genome-wide variation in conserved regions. We also present an online tool that allows MCS data to be directly exported to the UCSC genome browser so that MCS-SNPs can be easily identified within genomic regions of interest.</p> <p>Conclusion</p> <p>Our results showed that MCS can easily be used to prioritize markers for follow-up and candidate gene association studies. We believe that this novel approach demonstrates a paradigm for expediting the search for genes contributing to complex diseases.</p

    Exome Sequencing of a Multigenerational Human Pedigree

    Get PDF
    Over the next few years, the efficient use of next-generation sequencing (NGS) in human genetics research will depend heavily upon the effective mechanisms for the selective enrichment of genomic regions of interest. Recently, comprehensive exome capture arrays have become available for targeting approximately 33 Mb or ∼180,000 coding exons across the human genome. Selective genomic enrichment of the human exome offers an attractive option for new experimental designs aiming to quickly identify potential disease-associated genetic variants, especially in family-based studies. We have evaluated a 2.1 M feature human exome capture array on eight individuals from a three-generation family pedigree. We were able to cover up to 98% of the targeted bases at a long-read sequence read depth of ≥3, 86% at a read depth of ≥10, and over 50% of all targets were covered with ≥20 reads. We identified up to 14,284 SNPs and small indels per individual exome, with up to 1,679 of these representing putative novel polymorphisms. Applying the conservative genotype calling approach HCDiff, the average rate of detection of a variant allele based on Illumina 1 M BeadChips genotypes was 95.2% at ≥10x sequence. Further, we propose an advantageous genotype calling strategy for low covered targets that empirically determines cut-off thresholds at a given coverage depth based on existing genotype data. Application of this method was able to detect >99% of SNPs covered ≥8x. Our results offer guidance for “real-world” applications in human genetics and provide further evidence that microarray-based exome capture is an efficient and reliable method to enrich for chromosomal regions of interest in next-generation sequencing experiments

    Association of mitochondrial variants and haplogroups identified by whole exome sequencing with Alzheimer's disease

    Get PDF
    Introduction: Findings regarding the association between mitochondrial DNA (mtDNA) variants and Alzheimer's disease (AD) are inconsistent. Methods: We developed a pipeline for accurate assembly and variant calling in mitochondrial genomes embedded within whole exome sequences (WES) from 10,831 participants from the Alzheimer's Disease Sequencing Project (ADSP). Association of AD risk was evaluated with each mtDNA variant and variants located in 1158 nuclear genes related to mitochondrial function using the SCORE test. Gene-based tests were performed using SKAT-O. Results: Analysis of 4220 mtDNA variants revealed study-wide significant association of AD with a rare MT-ND4L variant (rs28709356 C&gt;T; minor allele frequency = 0.002; P = 7.3 × 10 −5) as well as with MT-ND4L in a gene-based test (P = 6.71 × 10 −5). Significant association was also observed with a MT-related nuclear gene, TAMM41, in a gene-based test (P = 2.7 × 10 −5). The expression of TAMM41 was lower in AD cases than controls (P =.00046) or mild cognitive impairment cases (P =.03). Discussion: Significant findings in MT-ND4L and TAMM41 provide evidence for a role of mitochondria in AD.</p
    corecore