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Analysis of brain region-specific co-
expression networks reveals clustering of
established and novel genes associated
with Alzheimer disease
Daniel Lancour1,2, Josée Dupuis3, Richard Mayeux4, Jonathan L. Haines5, Margaret A. Pericak-Vance6,
Gerard C. Schellenberg7, Mark Crovella1,8†, Lindsay A. Farrer1,2,3,9,10,11*† and Simon Kasif1,12†

Abstract

Background: Identifying and understanding the functional role of genetic risk factors for Alzheimer disease (AD)
has been complicated by the variability of genetic influences across brain regions and confounding with age-
related neurodegeneration.

Methods: A gene co-expression network was constructed using data obtained from the Allen Brain Atlas for multiple
brain regions (cerebral cortex, cerebellum, and brain stem) in six individuals. Gene network analyses were seeded with
52 reproducible (i.e., established) AD (RAD) genes. Genome-wide association study summary data were integrated with
the gene co-expression results and phenotypic information (i.e., memory and aging-related outcomes) from gene
knockout studies in Drosophila to generate rankings for other genes that may have a role in AD.

Results: We found that co-expression of the RAD genes is strongest in the cortical regions where neurodegeneration
due to AD is most severe. There was significant evidence for two novel AD-related genes including EPS8 (FDR p =
8.77 × 10−3) and HSPA2 (FDR p = 0.245).

Conclusions: Our findings indicate that AD-related risk factors are potentially associated with brain region-specific
effects on gene expression that can be detected using a gene network approach.

Keywords: Alzheimer disease, Gene network analysis, Brain regions, Genome-wide association study, EPS8, HSPA2

Background
Neurodegenerative diseases, such as Alzheimer disease
(AD), Parkinson disease (PD), Huntington disease (HD),
and amyotrophic lateral sclerosis, impair or damage neu-
rons. Although many sub-cellular similarities between
neurodegenerative diseases have been identified [1], the

regional differences between them are quite profound
[2–5]. For example, neuronal cell death from HD is pri-
marily localized to the basal ganglia, whereas both AD
and PD result in cell death throughout the brain [5].
Furthermore, PD causes the most severe cell death in
the substantia nigra [2] whereas AD most heavily affects
the hippocampus, the frontal cortex, and the temporal
lobe [4]. These studies highlight the importance of
studying gene expression signatures and relationships of
AD-associated genes in different brain regions. For in-
stance, an increased correlation in gene expression
among two AD-associated genes in the brain structures
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such as the cortex as compared to other brain regions
suggests either a functional relationship or cell/sub-re-
gion-specific expression biases towards cell types where
the disease tend to originate or progress most rapidly.
Altered functional connectivity between brain regions

has been demonstrated for several neuropsychiatric dis-
eases including schizophrenia, depression, and AD using
functional magnetic resonance imaging [6–8]. Brain im-
aging and neuropathological studies indicate that the
hippocampus, which has a role in memory formation, is
one of the first structures showing a marked neuronal
loss in AD and, compared to other regions, suffers the
largest relative reduction in volume by the latter stages
of the disease [9]. Regional specificity is also evident by
longitudinal patterning of the AD-related tau and
amyloid-β proteins that aggregate into neurofibrillary
tangles and senile plaques, respectively [10]. In the early
stages of AD, a small number of tangles typically form in
the brain stem and then spread aggressively to most of
the cerebrum by the latest stage [11, 12]. Amyloid pla-
ques form in the opposite pattern, beginning primarily
in the outer cortex and spreading inward and then to
the brain stem [10]. Notably, very few protein aggregates
form in the cerebellum even at the most severe stages of
AD.
Differences in AD severity between the regions of the

brain may be a consequence of a variety of factors. One
such factor is the tissue-specific expression patterns of
genes throughout the body, which is a relevant consider-
ation for the human brain given its vast complexity and
compartmentalization [13]. An additional factor may
also be the changing cell type fractions observed be-
tween major regions of the brain [14, 15]. Large-scale
multi-omic approaches have been able to assist in un-
derstanding these complicated roots of neuropsychiatric
disease [16, 17]. Furthermore, they have been able to
identify novel disease-related gene candidates [18–20].
In this study, we integrated network-based correlation

methods with existing genome-wide association study
(GWAS) data and gene expression data derived from the
brain in order to identify additional AD-related genes
using a network methodology. In addition to identifying
several novel biologically relevant genes for AD, we
show that the strength of the correlations among previ-
ously established AD genes increases when the networks
are restricted to the sub-regions of the brain that are
most impacted by AD.

Methods
Acquisition of GWAS data and curation of AD genes
We obtained summarized results from a GWAS for AD
risk conducted using 16,175 AD cases and 17,175 con-
trols of European ancestry that were obtained as previ-
ously described [21, 22]. Association evidence with each

gene was derived from p values for the association with
individual single nucleotide polymorphisms (SNPs) cor-
rected for multiple testing using an approximation that
has been shown to be a conservative adjustment for re-
combination hotspots, linkage disequilibrium, and gene
size [23]. This correction can be expressed as:

PGene
0

g ¼ 1 − 1 − PBestSNP
g

� �Nþ1
2

where N is the number of SNPs existing within a gene.
Analyses for this study were also predicated on a group
of reproducible AD (RAD) genes which were previously
curated from the literature [21].

Acquisition, labeling, and processing of brain expression
data
Measurements of gene expression in the human brain
were acquired from the Allen Brain Atlas (ABA). This
database contains microarray data from 3702 single tis-
sue samples extracted from six neuropathologically
healthy brains (ages 24, 26, 31, 39, 49, and 57). Data de-
rived from each sample consist of an expression vector
containing expression measurements from 45,000 probes
in the extracted tissue. Each sample was annotated at
three different levels of granularity, which are defined
for the purpose of this study as low-, mid-, or high-level
structures in terms of region specificity. Principal com-
ponents (PCs) of the expression vectors across all sam-
ples were computed using the prcomp method from the
R programming package [24]. Then, each sample was
annotated according to the brain region based on the
hierarchical labeling scheme described above. A scatter-
plot of the first and second PCs was produced to ascer-
tain whether the expression vectors of samples displayed
batch effects related to either the region or the brains
from which samples were derived.

Determining gene expression within each brain region
Because some genes are queried by multiple probes, the
mean expression of all probes mapping to each gene was
computed, resulting in a gene × sample expression
matrix. The expression of each gene in each brain region
was adjusted using a mixed effect model approach to ac-
count for repeated sampling of both individual brains
and regions in the ABA dataset [25]. Mixed effect model
specification is contained in Additional file 1.

Construction of region-specific brain co-expression
networks
We constructed a co-expression network based upon
correlations between all pairs of genes across the cere-
brum, cerebellum, and the brain stem. In this instance,
each node of the network is a gene, and each edge
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between genes is the absolute value of the Pearson cor-
relation coefficient between a pair of genes. Due to the
high impact of AD on the cerebrum, two additional cor-
relation networks were created by subdividing the cere-
brum into two non-overlapping subsets of regions based
upon the relative time point in the course of the disease
the region typically displays AD-related protein aggrega-
tion [26]. In total, there were 79 regions of the cerebrum
in the ABA dataset that showed some neuropathological
evidence of AD at Braak stage 1, which we refer to as
the early-stage regions, and 37 regions of the cere-
brum that showed more pronounced AD pathology at
Braak stage 3, which we refer to as late-stage regions.
Correlations between all gene pairs were computed
separately for early- and late-stage regions. In order
to compare correlations between sets of genes of
interest across networks, we normalized the correla-
tions within each network. For this, we applied a
novel metric, referred to as median ranking by correl-
ation (MRC), that is derived using a “leave-one-out”
strategy to normalize the distribution of correlations
into a uniform distribution of ranks that is compar-
able across networks. Details of the MRC procedure
are provided in Additional file 1.

Verifying consistency of gene rankings across correlation
networks
Due to the small number of brain specimens in the ABA
dataset, we tested the consistency of gene rankings by
constructing a gene × gene correlation network for each
brain. This procedure uses the same correlation ap-
proach described above, except that the expression levels
of genes in each region were determined based on the
measurements from a single brain at a time. Next, each
non-RAD gene was ranked by its correlation to the RAD
seed genes within each of the six individual correlation
networks. Finally, a Kendall Tau rank correlation matrix
was derived based upon all possible combinations of
these six ranked lists.

Network-based ranking of novel AD genes
Based on the observation that the RAD genes tend to be
highly correlated, we hypothesized that other genes
showing a high correlation with established AD genes
are likely to be AD-related genes. Therefore, a summed
absolute Pearson correlation with all the RAD genes was
computed for each non-RAD gene. Next, a percentile
rank of each non-RAD gene-based upon these sums was
computed and converted to Z-scores, which we refer to

Fig. 1 Principal component analysis of expression vectors indicates sample clustering for high-level brain structures. Principal components were
computed for all samples in the dataset. There was no evidence of clustering for mid-level brain structure. CX, cerebrum; BS, brain stem;
CB, cerebellum
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as network scores. If N genes are ranked, then the per-
centile rank for each gene is percentile = (rank)/(N + 1),
ranging from 0 to 1. These percentiles form a uniform
distribution, which are converted to Z-scores using
qnorm(Percentile, lower.tail = F) in R. These network
scores were then combined with genetic association
Z-scores derived by a GWAS for AD risk including
approximately 30,000 individuals using the Stouffer
method implemented [27] in the meta-analysis tool
METAL that was modified to equally weight both
scores [28]:

Zcombined ¼ 0:5� Zgwas þ 0:5� Znetworkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:52 þ 0:52

p

Further ranking was performed by integrating pheno-
typic information from gene orthologs in Flybase to
focus on genes which when knocked out in a model or-
ganism result in an AD-related phenotype including pre-
mature aging, defective memory, defective aging, and
oxidative stress [29]. We also included genes which have
external experimental evidence for influencing AD-
related processes in human cell lines and brain. Linking
fly and human gene orthologs was accomplished using

the Drosophilia RNAi Screening Integrative Ortholog
Prediction Tool (DIOPT) [30]. This robust consensus
mapping approach has been utilized as a functional val-
idation strategy in studies of neurologically relevant phe-
notypes [31]. The significance of network scores was
determined based on the false discovery rate (FDR).

Results
The principal component analysis revealed a potential
batch effect in the six brain samples with respect to the
gene expression in the three high-level brain structures
(Fig. 1), noting that this analysis does not account for
the non-independent gene co-expression. Further ana-
lysis revealed that most RAD genes tended to have fairly
static expression in the cerebellum and brain stem re-
gardless of the changes in the mid-level structure (Fig. 2).
However, the expression for several of these genes ap-
pears more variable across the mid-level structures in
the cerebrum.
Comparison of the co-expression of RAD genes across

the high-level brain regions revealed higher correlation
ranks (CRs) in the cerebrum (0.748) than in the brain
stem (0.648) and cerebellum (0.574, Table 1). These dif-
ferences appear to be due largely to a few genes

Fig. 2 Expression of RAD genes is region-specific. Heatmap shows the expression patterns in the brain high-level structures (hst) and mid-level
structures (mst) for 20 RAD genes including 10 of the most well-established AD genes (i.e., APOE, APP, PSEN1, PSEN2, CR1, BIN1, SORL1, ABCA7,
MAPT, TREM2) and 10 others chosen randomly from the total set of 52 RAD genes in Table 1. Patterns for the other 32 genes were similar but not
shown to improve visualization. The strength and pattern of the expression are color-coded according to the scheme shown on the right of the
heatmap with red indicating increased expression and blue indicating decreased expression. BS, brain stem; CB, cerebellum; CX, cerebrum; Amg,
amygdala; BF, basal forebrain; Bpons, basis pontis; CbCx, cerebellar cortex; CbN, cerebellar nucleus; CgG, central gray, gamma; CI, claustrum; DT,
dentate nucleus; ET, epithalamus; FL, frontal lobe; GP, globus pallidus; HiF, hippocampal fissure; Hy, hypothalamus; Ins, insula; MES,
mesencephalon; MY, myelencephalon; OL, occipital lobe; PHG, parahippocampal gyrus; PL, paralemniscal nucleus; PTg, pedunculotegmental
nucleus; SbT, subthalamus; Str, subiculum, transition area; TL, temporal lobe; VT, ventral tegmental area
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including APOE and MAPT which showed much greater
co-expression in the cerebrum (CR = 0.745 and 0.863,
respectively) than in the cerebellum (CR = 0.280 and
0.542, respectively) and brain stem (CR = 0.216 and
0.337, respectively). Surprisingly, the CR for APP was
much higher in the cerebellum (0.99) than in the brain
stem (0.505) and cerebrum (0.376). Multiple RAD genes
including PSEN2, EPHA1, LMX1B, TPBG, CLU, AKAP9,
ZNF804B, PDGFRL, and ABCA7 were not meaningfully
co-expressed with other RAD genes in any of the
structures.
The MRC of the RAD genes was appreciably and

nearly significantly higher for the late-stage network
(0.733) than the early-stage region network (0.615, Wil-
coxon signed rank p = 0.052), but the CRs for many in-
dividual genes including APOE, APP, and MAPT were
similar across these two networks (Table 2). The com-
parison of correlation networks in the cerebrum con-
structed for each individual showed that RAD genes
tend to have low variability in CR among individuals
within this dataset (Fig. 3). The patterns of co-
expression across the individual brains are moderately
high and consistent with the CR values between 0.455
and 0.652 (Fig. 4).
In order to predict novel AD genes based upon the

above observations, a network score was produced for
each non-RAD gene using the cerebrum correlation net-
work in which clustering of the RAD genes was stron-
gest. These network scores were then combined with
GWAS Z-scores resulting in re-ordered AD gene rank-
ings. A normal approximation was used to evaluate the
significance of the combined scores. These results were
filtered using gene knockout information from Flybase
to limit the focus to genes which have functional

Table 1 Ranked correlations (RC) of RAD genes in the
cerebrum, cerebellum, and brain stem. Genes are ordered
according to the variance (highest to lowest) of their CR across
the three structures

Gene Percentile ranking by correlation

Brain stem Cerebellum Cerebrum

ZCWPW1 0.991 0.080 0.783

TRIP4 0.997 0.226 0.772

SORCS1 0.076 0.602 0.807

OSTN 0.753 0.196 0.858

PLXNA4 0.182 0.601 0.854

SORCS2 0.785 0.136 0.605

CASP8 0.222 0.720 0.853

AKAP9 0.541 0.877 0.214

APP 0.505 0.990 0.376

ABCG1 0.392 0.325 0.897

TP53INP1 0.880 0.394 0.968

PFDN1 0.557 0.998 0.406

COBL 0.902 0.323 0.662

APOE 0.216 0.280 0.745

SORCS3 0.134 0.376 0.706

EPHA1 0.219 0.739 0.294

ACE 0.778 0.667 0.249

CR1 0.068 0.344 0.603

MAPT 0.337 0.542 0.863

KCNMB2 0.021 0.530 0.401

CLU 0.732 0.582 0.219

PDGFRL 0.634 0.395 0.126

PLD4 0.948 0.463 0.770

SORL1 0.935 0.462 0.612

CD2AP 0.351 0.691 0.772

GALNT7 0.390 0.823 0.699

SLC10A2 0.329 0.224 0.640

PILRA 0.601 0.896 0.494

CASS4 0.040 0.204 0.438

PLD3 0.536 0.355 0.752

MS4A6A 0.603 0.623 0.934

C1QTNF4 0.804 0.714 0.451

MS4A4A 0.728 0.499 0.859

ABI3 0.685 0.567 0.908

NCR2 0.776 0.664 0.975

UNC5C 0.797 0.517 0.765

PTK2B 0.688 0.979 0.899

MEF2C 0.812 0.695 0.986

ABCA7 0.082 0.338 0.095

LMX1B 0.003 0.078 0.276

TREM2 0.793 0.820 0.963

Table 1 Ranked correlations (RC) of RAD genes in the
cerebrum, cerebellum, and brain stem. Genes are ordered
according to the variance (highest to lowest) of their CR across
the three structures (Continued)

Gene Percentile ranking by correlation

Brain stem Cerebellum Cerebrum

ECHDC3 0.805 0.703 0.670

BIN1 0.663 0.798 0.724

PSEN2 0.242 0.256 0.356

CD33 0.876 0.832 0.950

ZNF804B 0.073 0.141 0.162

PICALM 0.912 0.922 0.989

HLA-DRB5 0.973 0.910 0.986

PSEN1 0.879 0.924 0.866

INPP5D 0.937 0.987 0.982

TPBG 0.220 0.240 0.249

PLCG2 0.943 0.963 0.945
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evidence for producing AD-related phenotypes. Of the
remaining 654 genes after the final filtering step, there
was significant evidence for two novel AD-related genes
including EPS8 (FDR p = 8.77 × 10−3) and HSPA2 (FDR
p = 0.245) (Table 3). Several previously reported AD
genes also had high rankings but were not significant
after FDR correction including ADAM10 (FDR p = 0.40)
and HDAC1 (FDR p = 0.79). Only one of the top-ranked
genes, RCAN1, when knocked out resulted in as many as
three AD-related phenotypes in flies; however, the statis-
tical support was modest (FDR p = 0.79).

Discussion
Previous studies using correlation or other network
strategies have increased discovery and understanding of
the functional roles of novel disease-related genes across
many biological contexts [18, 32–34]. In this study, we
applied an integrative network strategy to capture com-
plex relationships between RAD genes across the rele-
vant regions of the brain and to aid the discovery of
novel AD-related genes. This approach entailed integra-
tion of AD GWAS data, gene expression measures in
multiple brain regions, and phenotypic information (i.e.,
memory and aging-related outcomes) from gene knock-
out studies in Drosophila [29]. By separating the regions
of the brain according to the established patterns of AD-
related pathology including neurodegeneration and pro-
tein aggregation, we showed that the correlation of ex-
pression between previously established AD genes is
highest in regions severely impacted by AD, noting gene
expression data were derived from brains without AD
pathology. In addition, we identified potential novel AD
genes by numerically combining results from co-
expression analysis of established AD genes and other
genes in relevant brain regions with summary statistics
from a large AD GWAS.

Table 2 Ranked correlations (RC) of RAD genes in early- and
late-stage correlation networks

Gene Percentile ranking by correlation

Early Late

UNC5C 0.127 0.997

TP53INP1 0.093 0.931

ZCWPW1 0.156 0.979

ABCG1 0.192 0.956

PLD4 0.233 0.963

KCNMB2 0.954 0.269

ABCA7 0.831 0.180

CLU 0.822 0.235

TPBG 0.735 0.163

CASS4 0.202 0.774

SLC10A2 0.284 0.851

ECHDC3 0.951 0.396

INPP5D 0.363 0.874

AKAP9 0.647 0.195

SORL1 0.975 0.529

SORCS1 0.865 0.419

LMX1B 0.588 0.158

CASP8 0.425 0.851

OSTN 0.080 0.505

NCR2 0.492 0.888

SORCS3 0.482 0.864

PICALM 0.640 1.000

C1QTNF4 0.105 0.428

TRIP4 0.619 0.896

PSEN1 0.712 0.984

PSEN2 0.594 0.380

PILRA 0.489 0.289

ABI3 0.671 0.867

PLCG2 0.984 0.794

ACE 0.065 0.249

APOE 0.987 0.807

PTK2B 0.756 0.579

PDGFRL 0.111 0.272

SORCS2 0.481 0.641

MS4A6A 0.728 0.884

MS4A4A 0.881 0.727

TREM2 0.849 0.999

GALNT7 0.737 0.882

EPHA1 0.330 0.467

CD2AP 0.531 0.667

HLA-DRB5 0.847 0.948

COBL 0.830 0.740

Table 2 Ranked correlations (RC) of RAD genes in early- and
late-stage correlation networks (Continued)

Gene Percentile ranking by correlation

Early Late

PLXNA4 0.847 0.760

CR1 0.610 0.691

PLD3 0.584 0.647

MEF2C 0.800 0.739

PFDN1 0.596 0.657

ZNF804B 0.219 0.168

APP 0.676 0.705

BIN1 0.949 0.925

CD33 0.977 0.988

MAPT 0.534 0.526
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The most robust novel gene identified by our ap-
proach is EPS8. This gene encodes epidermal growth
factor receptor substrate 8 which is involved in actin
cytoskeleton regulation and is abundantly expressed
in many brain regions [35]. The accumulation of fila-
mentous actin (F-actin) is associated with tau-induced
neurodegeneration in Drosophila and mouse tauopa-
thy models [36]. The deletion of Eps8 in mice leads
to a reduction in hippocampal synaptic plasticity and
impaired cognitive performance [37]. Three genes en-
coding heat shock proteins (HSPA2, HSPA6, and
HSPB1) also emerged among our top findings. Not-
ably, HSPA2 was also identified as related to AD in a
recent network analysis in an independent dataset
[38]. Heat shock proteins have a major role in hand-
ling misfolded proteins including amyloid-β [39]. Al-
though the expression of heat shock protein genes
has been well studied in AD [40], there is little evi-
dence for the association of AD risk with polymor-
phisms in any members of this gene family [41].
Several other top-ranked genes in our study have dir-

ectly or indirectly been linked to AD. ADAM10 encodes

disintegrin and metalloproteinase 10 which is a synaptic
enzyme that has been previously shown to limit
amyloid-β1-42 peptide formation in AD. A variant in
ADAM10 recently achieved genome-wide significance in
one of the largest genetic studies of AD containing more
than 95,000 individuals [42, 43]. The catalase protein
encoded by CAT binds with amyloid and inhibition of
this interaction has been reported to protect cells from
toxic protein aggregation [44, 45]. Several genes in the
HDAC family have been reported to impair memory in
animal models, and inhibitors of several members of the
HDAC gene family, including HDCA1 identified for the
first time in our study as an AD candidate gene, have
been gaining support as a therapeutic approach for treat-
ing AD [46–48]. In humans, loss of HDAC5 impairs
memory function [47] and variants in HDAC9 have been
associated with a dual outcome of neurofibrillary tangles
and amyloid angiopathy [49]. We also obtained mild evi-
dence supporting a role for the gene encoding acetyl-
cholinesterase (ACHE). This is a noteworthy finding in
light of inconsistent and generally negative reports of as-
sociation for AD with ACHE and related genes encoding

Fig. 3 Mean rank correlations for RAD genes. A correlation network of the cerebrum was constructed for each of the six brains. The mean
correlation and 95% confidence interval are shown for each RAD gene averaged across the six brains
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choline acetyltransferase (CHAT) and butyrylcholinester-
ase (BCHE), despite the fact that AD is characterized by
an extensive loss of cholinergic neurons from the basal
forebrain area and the wide use of cholinesterase inhibi-
tors to treat the early stages of cognitive decline [50]. Ex-
pression of RCAN1, which encodes the regulator of
calcineurin 1 and the only gene when knocked out re-
sulted in three AD-related phenotypes in Drosophila, is
increased in AD brain [51], and overexpression of the
human RCAN1.1S isoform inserted in mice promotes
early age-dependent memory and synaptic plasticity
deficits and mitochondrial dysregulation leading to
tau pathology [52].
A major motivation for our approach was to deter-

mine if the brain region-specific effects exhibited by AD
can be detected using a correlation network approach.
Recent work indicates that cell type compositions of the
brain regions are highly variable in aging brains, so the
cross-regional analysis is able to capture important prop-
erties such as changing cell fractions that may explain
why the biological symptoms of AD are not uniformly
present throughout the brain [15]. The high MRC of the
RAD genes in the cerebrum supports this notion, given
that the cerebrum tends to be the most major structure
in the brain affected by AD [4]. Further evidence for this
is also provided by the low MRC of the RAD genes in
the other brain regions (brain stem, cerebellum) where

the effect of AD is far less severe. Notably, these patterns
appear to be consistent in our study of cognitively
healthy individuals (Fig. 4).
Our findings also highlight several interesting patterns

among several well-established RAD genes. We observed
that expression of APOE and MAPT is highly correlated
with other RAD genes in the cerebrum to the other
RAD genes, but much less in the cerebellum and brain
stem which is consistent with our observation of the
RAD gene set as a whole. While most RAD genes are
not highly correlated in the cerebellum, we observed a
strong correlation among a few RAD genes, most not-
ably, APP, which had a high CR in the cerebellum (0.99),
but not in the cerebrum (0.38). APP is expressed across
most regions of the brain, as evidenced in the Gene Tis-
sue Expression (GTEx) portal [53]. One possible explan-
ation for a higher correlation of expression for a few
RAD genes such as APP in the cerebellum is that they
have an important role throughout the brain, whereas
other RAD genes have a more localized role in cerebral
function and health. A clearer understanding of this pat-
tern will require a focused analysis of gene co-
expression within specific regions in the cerebrum.
Interpretation of our results has several caveats. First,

we analyzed a dataset that has few individuals but a high
number of brain regions in which expression was mea-
sured. However, the expression patterns were consistent

Fig. 4 Pairwise correlations of the RAD co-expression networks among brain samples. Rankings of all non-RAD genes were derived for each of
the six individual networks using the RAD genes as the seed genes. The Kendall Tau rank correlation was then computed between gene rankings
using each possible pairing of networks
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across individual brains in the dataset. If we had chosen
instead a publicly available dataset containing a larger
number of individuals but expression measurements in
fewer regions, we would not have observed the high
variation in the expression of the RAD genes across re-
gions of the cerebrum. This underscores the need for

larger samples of brains with expression data in more
precisely defined regions. Second, the present study did
not include any brains from AD individuals. Although
we utilized known Braak staging to characterize regions,
it is necessary to compare gene expression in the brains
showing progressively severe AD pathology to determine

Table 3 Top-ranked genes based on the combined GWAS and network score. Genes are listed only if the phenotype induced by
knockdown in flies is AD-related based on evidence of defective memory (DM), defective aging (DA), oxidative stress (OS), or
premature aging

Gene
name

Phenotype One-tailed Z-score p value

GWAS Network Combined Unadjusted FDR

EPS8 DM 3.16 2.78 4.20 1.34E−05 8.77E−03

HSPA2 DA 2.98 1.51 3.17 7.51E−04 2.45E−01

ADAM10 DA 2.61 1.50 2.90 1.84E−03 4.01E−01

HSPA6 DA 2.13 1.63 2.66 3.88E−03 6.34E−01

CAMK2A DM 0.94 2.60 2.50 6.13E−03 7.91E−01

HDAC1 DA, OS 1.40 1.97 2.38 8.55E−03 7.91E−01

MAPK10 DA, OS 1.58 1.68 2.30 1.06E−02 7.91E−01

CAT DA, OS 2.31 0.89 2.27 1.17E−02 7.91E−01

FXR1 DM 0.58 2.60 2.24 1.24E−02 7.91E−01

CD164 DM 0.90 2.23 2.21 1.34E−02 7.91E−01

HSPB1 OS 1.58 1.52 2.19 1.43E−02 7.91E−01

FBXW7 OS 0.66 2.34 2.12 1.69E−02 7.91E−01

DAGLB OS 1.52 1.48 2.12 1.71E−02 7.91E−01

NFE2L3 OS 1.71 1.20 2.06 1.98E−02 7.91E−01

MAFB OS 1.56 1.31 2.03 2.11E−02 7.91E−01

ITGAX DM 1.67 1.20 2.03 2.11E−02 7.91E−01

SETBP1 DA 1.26 1.60 2.02 2.14E−02 7.91E−01

ACHE DM 2.12 0.71 2.00 2.28E−02 7.91E−01

ITGAM DM 1.56 1.19 1.94 2.59E−02 7.91E−01

ITPR1 DA 1.01 1.72 1.93 2.68E−02 7.91E−01

HBB OS 2.68 0.02 1.91 2.81E−02 7.91E−01

PLK3 DA 2.16 0.50 1.88 2.98E−02 7.91E−01

TRIB3 DM 1.35 1.29 1.87 3.08E−02 7.91E−01

RCAN1 DA, DM, OS 1.24 1.40 1.87 3.10E−02 7.91E−01

GABARAP DM 0.74 1.87 1.85 3.23E−02 7.91E−01

NIPBL DM 0.72 1.90 1.85 3.24E−02 7.91E−01

GPD1 OS 1.54 1.06 1.84 3.26E−02 7.91E−01

GRIN2A DM 0.98 1.59 1.82 3.47E−02 8.10E−01

ITPKA OS 0.57 1.95 1.78 3.78E−02 8.29E−01

DNM1 DM 1.02 1.46 1.76 3.94E−02 8.29E−01

PGC DA 1.28 1.19 1.75 4.00E−02 8.29E−01

CIDEC DM 1.60 0.87 1.74 4.06E−02 8.29E−01

TXNRD2 DA 1.85 0.59 1.73 4.21E−02 8.34E−01

BZW2 DM 1.60 0.80 1.69 4.51E−02 8.67E−01

CBX3 DA 1.54 0.81 1.66 4.81E−02 8.91E−01

PCNA OS 2.31 0.03 1.65 4.91E−02 8.91E−01
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whether the patterns observed in this study are related
to AD. In addition, expression patterns for only a few
genes remained significant after correction for multiple
testing likely due to the relatively small sample size. Fi-
nally, because no brains from persons with AD were in-
cluded in this study, we were unable to evaluate whether
any of the gene co-expression patterns we identified dif-
fer between those with and without AD or are correlated
with the degree of AD pathology in specific brain re-
gions. However, the purpose of this study was to investi-
gate whether established AD risk genes are co-expressed
in the brain and whether their co-expression varies by
brain region, specifically regions that are affected early
in the disease compared to regions that are spared until
later in the disease process. Because our findings were
observed in a study of brains from relatively young indi-
viduals most of whom were autopsied several decades
before typical onset of AD symptoms after age 65, our
findings do provide insight about the coordinated ex-
pression of genes that are known to have a role in AD
and specifically in regions of the brain that are tempor-
ally affected by the disease. Finally, the expression pat-
terns for only a few genes remained significant after
correction for multiple testing likely due to the relatively
small sample size.

Conclusions
This work establishes a strong case for many potential
follow-up investigations. Analysis of the expression in
more fine-grained brain regions in larger samples in-
cluding individuals with pathologically confirmed AD at
various stages will allow more concise conclusions about
the joint influences of multiple genes on the progression
of AD from preclinical to late stages. Although highly
granular regional expression data from AD brains is not
readily available, efforts are in progress by the AMP-AD
consortium to profile the expression of various regions
of AD brains [54]. Validated differences in cross-regional
correlation patterns between healthy and AD brains
would improve the understanding of the mechanisms
underlying the progression of AD and inform strategies
for developing more effective therapeutic targets.
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