52 research outputs found

    TDAM: a topic-dependent attention model for sentiment analysis

    Get PDF
    We propose a topic-dependent attention model for sentiment classification and topic extraction. Our model assumes that a global topic embedding is shared across documents and employs an attention mechanism to derive local topic embedding for words and sentences. These are subsequently incorporated in a modified Gated Recurrent Unit (GRU) for sentiment classification and extraction of topics bearing different sentiment polarities. Those topics emerge from the words' local topic embeddings learned by the internal attention of the GRU cells in the context of a multi-task learning framework. In this paper, we present the hierarchical architecture, the new GRU unit and the experiments conducted on users' reviews which demonstrate classification performance on a par with the state-of-the-art methodologies for sentiment classification and topic coherence outperforming the current approaches for supervised topic extraction. In addition, our model is able to extract coherent aspect-sentiment clusters despite using no aspect-level annotations for training

    Topical Phrase Extraction from Clinical Reports by Incorporating both Local and Global Context

    Get PDF
    Making sense of words often requires to simultaneously examine the surrounding context of a term as well as the global themes characterizing the overall corpus. Several topic models have already exploited word embeddings to recognize local context, however, it has been weakly combined with the global context during the topic inference. This paper proposes to extract topical phrases corroborating the word embedding information with the global context detected by Latent Semantic Analysis, and then combine them by means of the Polya urn ´ model. To highlight the effectiveness of this combined approach the model was assessed analyzing clinical reports, a challenging scenario characterized by technical jargon and a limited word statistics available. Results show it outperforms the state-of-the-art approaches in terms of both topic coherence and computational cost

    Probabilistic neural topic models for text understanding

    Get PDF
    Making sense of text is still one of the most fascinating and open challenges thanks and despite the vast amount of information continuously produced by recent technologies. Along with the growing size of textual data, automatic approaches have to deal with the wide variety of linguistic features across different domains and contexts: for example, user reviews might be characterised by colloquial idioms, slang or contractions; while clinical notes often contain technical jargon, with typical medical abbreviations and polysemous words whose meaning strictly depend on the particular context in which they were used. We propose to address these issues by combining topic modelling principles and models with distributional word representations. Topic models generate concise and expressive representations for high volumes of documents by clustering words into “topics”, which can be interpreted as document decompositions. They are focused on analysing the global context of words and their co-occurrences within the whole corpus. Distributional language representations, instead, encode the word syntactic and semantic properties by leveraging the word local contexts and can be conveniently pre-trained to facilitate the model training and the simultaneous encoding of external knowledge. Our work represents one step in bridging the gap between the recent advances in topic modelling and the increasingly richer distributional word representations, with the aim of addressing the aforementioned issues related to different linguistic features within different domains. In this thesis, we first propose a hierarchical neural model inspired by topic modelling, which leverages an attention mechanism along with a novel neural cell for fine-grained detection of sentiments and themes discussed in user reviews. Next, we present a neural topic model with adversarial training to distinguish topics based on their high-level semantics (e.g. opinions or factual descriptions). Then, we design a probabilistic topic model specialised for the extraction of biomedical phrases, whose inference process goes beyond the limitations of traditional topic models by seamlessly combining the word co-occurrences statistics with the information from word embeddings. Finally, inspired by the usage of entities in topic modelling [85], we design a novel masking strategy to fine-tune language models for biomedical question-answering. For each of the above models, we report experimental assessments supporting their efficacy across a wide variety of tasks and domains

    Event-Centric Question Answering via Contrastive Learning and Invertible Event Transformation

    Get PDF
    Human reading comprehension often requires reasoning of event semantic relations in narratives, represented by Event-centric Question-Answering (QA). To address event-centric QA, we propose a novel QA model with contrastive learning and invertible event transformation, call TranCLR. Our proposed model utilizes an invertible transformation matrix to project semantic vectors of events into a common event embedding space, trained with contrastive learning, and thus naturally inject event semantic knowledge into mainstream QA pipelines. The transformation matrix is fine-tuned with the annotated event relation types between events that occurred in questions and those in answers, using event-aware question vectors. Experimental results on the Event Semantic Relation Reasoning (ESTER) dataset show significant improvements in both generative and extractive settings compared to the existing strong baselines, achieving over 8.4% gain in the token-level F1 score and 3.0% gain in Exact Match (EM) score under the multi-answer setting. Qualitative analysis reveals the high quality of the generated answers by TranCLR, demonstrating the feasibility of injecting event knowledge into QA model learning. Our code and models can be found at https://github.com/LuJunru/TranCLR.Comment: Findings of EMNLP 202

    Extracting event temporal relations via hyperbolic geometry

    Get PDF
    Detecting events and their evolution through time is a crucial task in natural language understanding. Recent neural approaches to event temporal relation extraction typically map events to embeddings in the Euclidean space and train a classifier to detect temporal relations between event pairs. However, embeddings in the Euclidean space cannot capture richer asymmetric relations such as event temporal relations. We thus propose to embed events into hyperbolic spaces, which are intrinsically oriented at modeling hierarchical structures. We introduce two approaches to encode events and their temporal relations in hyperbolic spaces. One approach leverages hyperbolic embeddings to directly infer event relations through simple geometrical operations. In the second one, we devise an end-to-end architecture composed of hyperbolic neural units tailored for the temporal relation extraction task. Thorough experimental assessments on widely used datasets have shown the benefits of revisiting the tasks on a different geometrical space, resulting in state-of-the-art performance on several standard metrics. Finally, the ablation study and several qualitative analyses highlighted the rich event semantics implicitly encoded into hyperbolic spaces

    CHIME : Cross-passage hierarchical memory network for generative review question answering

    Get PDF
    We introduce CHIME, a cross-passage hierarchical memory network for question answering (QA) via text generation. It extends XLNet introducing an auxiliary memory module consisting of two components: the context memory collecting cross-passage evidences, and the answer memory working as a buffer continually refining the generated answers. Empirically, we show the efficacy of the proposed architecture in the multi-passage generative QA, outperforming the state-of-the-art baselines with better syntactically well-formed answers and increased precision in addressing the questions of the AmazonQA review dataset. An additional qualitative analysis revealed the interpretability introduced by the memory module

    A disentangled adversarial neural topic model for separating opinions from plots in user reviews

    Get PDF
    The flexibility of the inference process in Variational Autoencoders (VAEs) has recently led to revising traditional probabilistic topic models giving rise to Neural Topic Models (NTM). Although these approaches have achieved significant results, surprisingly very little work has been done on how to disentangle the latent topics. Existing topic models when applied to reviews may extract topics associated with writers’ subjective opinions mixed with those related to factual descriptions such as plot summaries in movie and book reviews. It is thus desirable to automatically separate opinion topics from plot/neutral ones enabling a better interpretability. In this paper, we propose a neural topic model combined with adversarial training to disentangle opinion topics from plot and neutral ones. We conduct an extensive experimental assessment introducing a new collection of movie and book reviews paired with their plots, namely MOBO dataset, showing an improved coherence and variety of topics, a consistent disentanglement rate, and sentiment classification performance superior to other supervised topic models

    Position bias mitigation : a knowledge-aware graph model for emotion cause extraction

    Get PDF
    The Emotion Cause Extraction (ECE)} task aims to identify clauses which contain emotion-evoking information for a particular emotion expressed in text. We observe that a widely-used ECE dataset exhibits a bias that the majority of annotated cause clauses are either directly before their associated emotion clauses or are the emotion clauses themselves. Existing models for ECE tend to explore such relative position information and suffer from the dataset bias. To investigate the degree of reliance of existing ECE models on clause relative positions, we propose a novel strategy to generate adversarial examples in which the relative position information is no longer the indicative feature of cause clauses. We test the performance of existing models on such adversarial examples and observe a significant performance drop. To address the dataset bias, we propose a novel graph-based method to explicitly model the emotion triggering paths by leveraging the commonsense knowledge to enhance the semantic dependencies between a candidate clause and an emotion clause. Experimental results show that our proposed approach performs on par with the existing state-of-the-art methods on the original ECE dataset, and is more robust against adversarial attacks compared to existing models.Comment: ACL2021 Main Conference Long pape

    Adversarial learning of poisson factorisation model for gauging brand sentiment in user reviews

    Get PDF
    In this paper, we propose the Brand-Topic Model (BTM) which aims to detect brand-associated polarity-bearing topics from product reviews. Different from existing models for sentiment-topic extraction which assume topics are grouped under discrete sentiment categories such as `positive', `negative' and `neural', BTM is able to automatically infer real-valued brand-associated sentiment scores and generate fine-grained sentiment-topics in which we can observe continuous changes of words under a certain topic (e.g., `shaver' or `cream') while its associated sentiment gradually varies from negative to positive. BTM is built on the Poisson factorisation model with the incorporation of adversarial learning. It has been evaluated on a dataset constructed from Amazon reviews. Experimental results show that BTM outperforms a number of competitive baselines in brand ranking, achieving a better balance of topic coherence and uniqueness, and extracting better-separated polarity-bearing topics
    • …
    corecore