4,350 research outputs found

    The scaling of model test results to predict intake hot gas reingestion for STOVL aircraft with augmented vectored thrust engines

    Get PDF
    The difficulties of modeling the complex recirculating flow fields produced by multiple jet STOVL aircraft close to the ground have led to extensive use of experimental model tests to predict intake Hot Gas Reingestion (HGR). Model test results reliability is dependent on a satisfactory set of scaling rules which must be validated by fully comparable full scale tests. Scaling rules devised in the U.K. in the mid 60's gave good model/full scale agreement for the BAe P1127 aircraft. Until recently no opportunity has occurred to check the applicability of the rules to the high energy exhaust of current ASTOVL aircraft projects. Such an opportunity has arisen following tests on a Tethered Harrier. Comparison of this full scale data and results from tests on a model configuration approximating to the full scale aircraft geometry has shown discrepancies between HGR levels. These discrepancies although probably due to geometry and other model/scale differences indicate some reexamination of the scaling rules is needed. Therefore the scaling rules are reviewed, further scaling studies planned are described and potential areas for further work are suggested

    Interpreting doubly special relativity as a modified theory of measurement

    Full text link
    In this article we develop a physical interpretation for the deformed (doubly) special relativity theories (DSRs), based on a modification of the theory of measurement in special relativity. We suggest that it is useful to regard the DSRs as reflecting the manner in which quantum gravity effects induce Planck-suppressed distortions in the measurement of the "true" energy and momentum. This interpretation provides a framework for the DSRs that is manifestly consistent, non-trivial, and in principle falsifiable. However, it does so at the cost of demoting such theories from the level of "fundamental" physics to the level of phenomenological models -- models that should in principle be derivable from whatever theory of quantum gravity one ultimately chooses to adopt.Comment: 18 pages, plain LaTeX2

    CR Structures and Asymptotically Flat Space-Times

    Full text link
    We discuss the unique existence, arising by analogy to that in algebraically special space-times, of a CR structure realized on null infinity for any asymptotically flat Einstein or Einstein-Maxwell space-time.Comment: 6 page

    Twistors, special relativity, conformal symmetry and minimal coupling - a review

    Full text link
    An approach to special relativistic dynamics using the language of spinors and twistors is presented. Exploiting the natural conformally invariant symplectic structure of the twistor space, a model is constructed which describes a relativistic massive, spinning and charged particle, minimally coupled to an external electro-magnetic field. On the two-twistor phase space the relativistic Hamiltonian dynamics is generated by a Poincare scalar function obtained from the classical limit (appropriately defined by us) of the second order, to an external electro-magnetic field minimally coupled, Dirac operator. In the so defined relativistic classical limit there are no Grassman variables. Besides, the arising equation that describes dynamics of the relativistic spin differs significantly from the so called Thomas Bergman Michel Telegdi equation.Comment: 39 pages, no figures, few erronous statements (not affecting anything else in the papper) on page 23 delete

    The Stability of an Isotropic Cosmological Singularity in Higher-Order Gravity

    Full text link
    We study the stability of the isotropic vacuum Friedmann universe in gravity theories with higher-order curvature terms of the form (RabRab)n(R_{ab}R^{ab})^{n} added to the Einstein-Hilbert Lagrangian of general relativity on approach to an initial cosmological singularity. Earlier, we had shown that, when % n=1, a special isotropic vacuum solution exists which behaves like the radiation-dominated Friedmann universe and is stable to anisotropic and small inhomogeneous perturbations of scalar, vector and tensor type. This is completely different to the situation that holds in general relativity, where an isotropic initial cosmological singularity is unstable in vacuum and under a wide range of non-vacuum conditions. We show that when n1n\neq 1, although a special isotropic vacuum solution found by Clifton and Barrow always exists, it is no longer stable when the initial singularity is approached. We find the particular stability conditions under the influence of tensor, vector, and scalar perturbations for general nn for both solution branches. On approach to the initial singularity, the isotropic vacuum solution with scale factor a(t)=tP/3a(t)=t^{P_{-}/3} is found to be stable to tensor perturbations for 0.5<n<1.13090.5<n< 1.1309 and stable to vector perturbations for 0.861425<n10.861425 < n \leq 1, but is unstable as t0t \to 0 otherwise. The solution with scale factor a(t)=tP+/3a(t)=t^{P_{+}/3} is not relevant to the case of an initial singularity for n>1n>1 and is unstable as t0t \to 0 for all nn for each type of perturbation.Comment: 25 page

    Stable Isotropic Cosmological Singularities in Quadratic Gravity

    Get PDF
    We show that, in quadratic lagrangian theories of gravity, isotropic cosmological singularities are stable to the presence of small scalar, vector and tensor inhomogeneities. Unlike in general relativity, a particular exact isotropic solution is shown to be the stable attractor on approach to the initial cosmological singularity. This solution is also known to act as an attractor in Bianchi universes of types I, II and IX, and the results of this paper reinforce the hypothesis that small inhomogeneous and anisotropic perturbations of this attractor form part of the general cosmological solution to the field equations of quadratic gravity. Implications for the existence of a 'gravitational entropy' are also discussed.Comment: 18 pages, no figure

    Spacetime structure of static solutions in Gauss-Bonnet gravity: charged case

    Full text link
    We have studied spacetime structures of static solutions in the nn-dimensional Einstein-Gauss-Bonnet-Maxwell-Λ\Lambda system. Especially we focus on effects of the Maxwell charge. We assume that the Gauss-Bonnet coefficient α\alpha is non-negative and 4α~/214{\tilde \alpha}/\ell^2\leq 1 in order to define the relevant vacuum state. Solutions have the (n2)(n-2)-dimensional Euclidean sub-manifold whose curvature is k=1, 0k=1,~0, or -1. In Gauss-Bonnet gravity, solutions are classified into plus and minus branches. In the plus branch all solutions have the same asymptotic structure as those in general relativity with a negative cosmological constant. The charge affects a central region of the spacetime. A branch singularity appears at the finite radius r=rb>0r=r_b>0 for any mass parameter. There the Kretschmann invariant behaves as O((rrb)3)O((r-r_b)^{-3}), which is much milder than divergent behavior of the central singularity in general relativity O(r4(n2))O(r^{-4(n-2)}). Some charged black hole solutions have no inner horizon in Gauss-Bonnet gravity. Although there is a maximum mass for black hole solutions in the plus branch for k=1k=-1 in the neutral case, no such maximum exists in the charged case. The solutions in the plus branch with k=1k=-1 and n6n\geq6 have an "inner" black hole, and inner and the "outer" black hole horizons. Considering the evolution of black holes, we briefly discuss a classical discontinuous transition from one black hole spacetime to another.Comment: 20 pages, 10 figure

    Gravitational pressure on event horizons and thermodynamics in the teleparallel framework

    Full text link
    The concept of gravitational pressure is naturally defined in the context of the teleparallel equivalent of general relativity. Together with the definition of gravitational energy, we investigate the thermodynamics of rotating black holes in the teleparallel framework. We obtain the value of the gravitational pressure over the external event horizon of the Kerr black hole, and write an expression for the thermodynamic relation TdS=dE+pdVTdS =dE + pdV, where the variations refer to the Penrose process for the Kerr black hole. We employ only the notions of gravitational energy and pressure that arise in teleparallel gravity, and do not make any consideration of the area or the variation of the area of the event horizon. However, our results are qualitatively similar to the standard expression of the literature.Comment: 17 pages, 6 figure

    Shape in an Atom of Space: Exploring quantum geometry phenomenology

    Full text link
    A phenomenology for the deep spatial geometry of loop quantum gravity is introduced. In the context of a simple model, an atom of space, it is shown how purely combinatorial structures can affect observations. The angle operator is used to develop a model of angular corrections to local, continuum flat-space 3-geometries. The physical effects involve neither breaking of local Lorentz invariance nor Planck scale suppression, but rather reply on only the combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde

    Quasi-local energy-momentum and energy flux at null infinity

    Full text link
    The null infinity limit of the gravitational energy-momentum and energy flux determined by the covariant Hamiltonian quasi-local expressions is evaluated using the NP spin coefficients. The reference contribution is considered by three different embedding approaches. All of them give the expected Bondi energy and energy flux.Comment: 14 pages, accepted by Phys.Rev.
    corecore