740 research outputs found

    Simulations of gamma-ray burst afterglows with a relativistic kinetic code

    Full text link
    This paper introduces a kinetic code that simulates gamma-ray burst (GRB) afterglow emission from the external forward shock and presents examples of some of its applications. One interesting research topic discussed in the paper is the high-energy radiation produced by Compton scattering of the prompt GRB photons against the shock-accelerated electrons. The difference between the forward shock emission in a wind-type and a constant-density medium is also studied, and the emission due to Maxwellian electron injection is compared to the case with pure power-law electrons. The code calculates the time-evolving photon and electron distributions in the emission region by solving the relativistic kinetic equations for each particle species. For the first time, the full relativistic equations for synchrotron emission/absorption, Compton scattering, and pair production/annihilation were applied to model the forward shock emission. The synchrotron self-absorption thermalization mechanism, which shapes the low-energy end of the electron distribution, was also included in the electron equation. The simulation results indicate that inverse Compton scattering of the prompt GRB photons can produce a luminous TeV emission component, even when pair production in the emission region is taken into account. This very high-energy radiation may be observable in low-redshift GRBs. The test simulations also show that the low-energy end of a pure power-law distribution of electrons can thermalize owing to synchrotron self-absorption in a wind-type environment, but without an observable impact on the radiation spectrum. Moreover, a flattening in the forward shock X-ray light curve may be expected when the electron injection function is assumed to be purely Maxwellian instead of a power law.Comment: 16 pages, 11 figures, accepted for publication in A&

    Can lattice data for two heavy-light mesons be understood in terms of simply two-quark potentials?

    Get PDF
    By comparing lattice data for the two heavy-light meson system (Q^2 qbar^2) with a standard many-body approach employing only interquark potentials, it is shown that the use of unmodified two-quark potentials leads to a gross overestimate of the binding energy.Comment: Contribution to LATTICE99 (Heavy Quarks). 3 pages, 2 ps figure

    The radial distributions of a heavy-light meson on a lattice

    Get PDF
    In an earlier work, the charge (vector) and matter (scalar) radial distributions of heavy-light mesons were measured in the quenched approximation on a 16^3 times 24 lattice with a quark-gluon coupling of 5.7, a lattice spacing of 0.17 fm, and a hopping parameter corresponding to a light quark mass about that of the strange quark. Several improvements are now made: 1) The configurations are generated using dynamical fermions with a quark-gluon coupling of 5.2 (a lattice spacing of 0.14 fm); 2) Many more gauge configurations are included (78 compared with the earlier 20); 3) The distributions at many off-axis, in addition to on-axis, points are measured; 4) The data-analysis is much more complete. In particular, distributions involving excited states are extracted. The exponential decay of the charge and matter distributions can be described by mesons of mass 0.9+-0.1 and 1.5+-0.1 GeV respectively - values that are consistent with those of vector and scalar qqbar-states calculated directly with the same lattice parameters.Comment: 3 pages, 4 figures, Lattice2002(heavyquark

    The Charge and Matter radial distributions of Heavy-Light mesons calculated on a lattice

    Get PDF
    For a heavy-light meson with a static heavy quark, we can explore the light quark distribution. The charge and matter radial distributions of these heavy-light mesons are measured on a 16^3 * 24 lattice at beta=5.7 and a hopping parameter corresponding to a light quark mass about that of the strange quark. Both distributions can be well fitted up to 4 lattice spacings (r approx 0.7 fm) with the exponential form w_i^2(r), where w_i(r)=A exp(-r/r_i). For the charge(c) and matter(m) distributions r_c approx 0.32(2) fm and r_m approx 0.24(2) fm. We also discuss the normalisation of the total charge and matter integrated over all space, finding 1.30(5) and 0.4(1) respectively.Comment: 31 pages including 7 ps figure

    Four-quark energies in SU(2) lattice Monte Carlo using a tetrahedral geometry

    Full text link
    This contribution -- a continuation of earlier work -- reports on recent developments in the calculation and understanding of 4-quark energies generated using lattice Monte Carlo techniques.Comment: 3 pages, latex, no figures, contribution to Lattice 9

    Evolutionary multi-stage financial scenario tree generation

    Full text link
    Multi-stage financial decision optimization under uncertainty depends on a careful numerical approximation of the underlying stochastic process, which describes the future returns of the selected assets or asset categories. Various approaches towards an optimal generation of discrete-time, discrete-state approximations (represented as scenario trees) have been suggested in the literature. In this paper, a new evolutionary algorithm to create scenario trees for multi-stage financial optimization models will be presented. Numerical results and implementation details conclude the paper

    Simulations of gamma-ray burst afterglows with a relativistic kinetic code

    Get PDF
    Aims. This paper introduces a kinetic code that simulates gamma-ray burst (GRB) afterglow emission from the external forward shock and presents examples of some of its applications. One interesting research topic discussed in the paper is the high-energy radiation produced by Compton scattering of the prompt GRB photons against the shock-accelerated electrons. The difference between the forward shock emission in a wind-type and a constant-density medium is also studied, and the emission due to Maxwellian electron injection is compared to the case with pure power-law electrons. Methods. The code calculates the time-evolving photon and electron distributions in the emission region by solving the relativistic ki- netic equations for each particle species. For the first time, the full relativistic equations for synchrotron emission/absorption, Compton scattering, and pair production/annihilation were applied to model the forward shock emission. The synchrotron self-absorption ther- malization mechanism, which shapes the low-energy end of the electron distribution, was also included in the electron equation. Results. The simulation results indicate that inverse Compton scattering of the prompt GRB photons can produce a luminous TeV emission component, even when pair production in the emission region is taken into account. This very high-energy radiation may be observable in low-redshift GRBs. The test simulations also show that the low-energy end of a pure power-law distribution of electrons can thermalize owing to synchrotron self-absorption in a wind-type environment, but without an observable impact on the radiation spectrum. Moreover, a flattening in the forward shock X-ray light curve may be expected when the electron injection function is assumed to be purely Maxwellian instead of a power law. The flux during such a flattening is likely to be lower than the Swift/XRT sensitivity in the case of a constant-density external medium, but a wind environment may result in a higher flux during the shallow decay. &nbsp;</p
    • …
    corecore