38 research outputs found

    Generating Efficient Training Data via LLM-based Attribute Manipulation

    Full text link
    In this paper, we propose a novel method, Chain-of-Thoughts Attribute Manipulation (CoTAM), to guide few-shot learning by carefully crafted data from Large Language Models (LLMs). The main idea is to create data with changes only in the attribute targeted by the task. Inspired by facial attribute manipulation, our approach generates label-switched data by leveraging LLMs to manipulate task-specific attributes and reconstruct new sentences in a controlled manner. Instead of conventional latent representation controlling, we implement chain-of-thoughts decomposition and reconstruction to adapt the procedure to LLMs. Extensive results on text classification and other tasks verify the advantage of CoTAM over other LLM-based text generation methods with the same number of training examples. Analysis visualizes the attribute manipulation effectiveness of CoTAM and presents the potential of LLM-guided learning with even less supervision

    Envisioning a Next Generation Extended Reality Conferencing System with Efficient Photorealistic Human Rendering

    Full text link
    Meeting online is becoming the new normal. Creating an immersive experience for online meetings is a necessity towards more diverse and seamless environments. Efficient photorealistic rendering of human 3D dynamics is the core of immersive meetings. Current popular applications achieve real-time conferencing but fall short in delivering photorealistic human dynamics, either due to limited 2D space or the use of avatars that lack realistic interactions between participants. Recent advances in neural rendering, such as the Neural Radiance Field (NeRF), offer the potential for greater realism in metaverse meetings. However, the slow rendering speed of NeRF poses challenges for real-time conferencing. We envision a pipeline for a future extended reality metaverse conferencing system that leverages monocular video acquisition and free-viewpoint synthesis to enhance data and hardware efficiency. Towards an immersive conferencing experience, we explore an accelerated NeRF-based free-viewpoint synthesis algorithm for rendering photorealistic human dynamics more efficiently. We show that our algorithm achieves comparable rendering quality while performing training and inference 44.5% and 213% faster than state-of-the-art methods, respectively. Our exploration provides a design basis for constructing metaverse conferencing systems that can handle complex application scenarios, including dynamic scene relighting with customized themes and multi-user conferencing that harmonizes real-world people into an extended world.Comment: Accepted to CVPR 2023 ECV Worksho

    Answer is All You Need: Instruction-following Text Embedding via Answering the Question

    Full text link
    This work aims to build a text embedder that can capture characteristics of texts specified by user instructions. Despite its tremendous potential to deploy user-oriented embeddings, none of previous approaches provides a concrete solution for it. This paper offers a new viewpoint, which treats the instruction as a question about the input text and encodes the expected answers to obtain the representation accordingly. Intuitively, texts with the same (implicit) semantics would share similar answers following the instruction, thus leading to more similar embeddings. Specifically, we propose InBedder that instantiates this embed-via-answering idea by only fine-tuning language models on abstractive question answering tasks. InBedder demonstrates significantly improved instruction-following capabilities according to our proposed instruction awareness tests and instruction robustness tests, when applied to both large language models (LLMs) (e.g., llama-2-7b) and smaller encoder-based LMs (e.g., roberta-large). Additionally, our qualitative analysis of clustering outcomes, achieved by applying different instructions to the same corpus, demonstrates a high degree of interpretability

    Design Challenges of Intra- and Inter- Chiplet Interconnection

    Get PDF
    In a chiplet-based many-core system, intra- and inter- chiplet interconnection is key to system performance and power consumption. There are a few challenges in intra- and inter- chiplet interconnection network: 1) Fast and accurate simulation is necessary to analyze the performance metrics. 2) Efficient network architecture for inter- and intra- chiplet is necessary, including topology, PHY design and deadlock free routing algorithms, etc. 3) Deep learning based AI systems are demanding more computation power, which calls for the need of efficient and low power chiplet-based systems. This paper proposes network designs to address these challenges and provides future research directions

    Medicinal chemistry strategies towards the development of non-covalent SARS-CoV-2 Mpro inhibitors

    Get PDF
    The main protease (Mpro) of SARS-CoV-2 is an attractive target in anti-COVID-19 therapy for its high conservation and major role in the virus life cycle. The covalent Mpro inhibitor nirmatrelvir (in combination with ritonavir, a pharmacokinetic enhancer) and the non-covalent inhibitor ensitrelvir have shown efficacy in clinical trials and have been approved for therapeutic use. Effective antiviral drugs are needed to fight the pandemic, while non-covalent Mpro inhibitors could be promising alternatives due to their high selectivity and favorable druggability. Numerous non-covalent Mpro inhibitors with desirable properties have been developed based on available crystal structures of Mpro. In this article, we describe medicinal chemistry strategies applied for the discovery and optimization of non-covalent Mpro inhibitors, followed by a general overview and critical analysis of the available information. Prospective viewpoints and insights into current strategies for the development of non-covalent Mpro inhibitors are also discussed.We gratefully acknowledge financial support from Major Basic Research Project of Shandong Provincial Natural Science Foundation (ZR2021ZD17, China), Science Foundation for Outstanding Young Scholars of Shandong Province (ZR2020JQ31, China), Foreign Cultural and Educational Experts Project (GXL20200015001, China), Guangdong Basic and Applied Basic Research Foundation (2021A1515110740, China), China Postdoctoral Science Foundation (2021M702003). This work was supported in part by the Ministry of Science and Innovation of Spain through grant PID2019-104176RB-I00/AEI/10.13039/501100011033 awarded to Luis Menéndez-Arias; An institutional grant of the Fundación Ramón Areces (Madrid, Spain) to the CBMSO is also acknowledged.Peer reviewe

    Problems in wavelet analysis of hydrologic series and some suggestions on improvement

    No full text
    Applying the wavelet theory and methods to investigate the hydrologic processes such as precipitation and runoff is a hot field. However, several aspects in research are usually ignored: the effect of admissible condition of wavelet functions and the disturbance of noises for the detection of periods, the effect of the length of a hydrologic time-series on the final result, and the choice between the anomaly and the original time series for wavelet analysis. In this paper, these issues are fully discussed. Precipitation data from Lanzhou Precipitation Station are taken for case study. The result indicates that in the wavelet analysis of hydrologic series, denoise methods should be used to eliminate the influence of noises. The MexHat wavelet function satisfies the admissible condition, which ensures that the periodic properties of hydrologic processes can be welt represented by using the MexHat wavelet for decomposition. The affected range of hydrologic series which should be discarded before analysis is given. It is also suggested that the anomaly series should be used to highlight the actual undulation of the hydrologic series.Materials Science, MultidisciplinaryMultidisciplinary SciencesSCI(E)0ARTICLE180-861

    Ecological Risks Arising in the Regional Water Resources in Inner Mongolia Due to a Large-Scale Afforestation Project

    No full text
    In recent years, a large-scale afforestation campaign has been implemented in Inner Mongolia, China, to control desertification and soil erosion. However, the water consumption associated with large-scale afforestation significantly impacts the water resources in Inner Mongolia, resulting in a major ecological risk. This study aimed to evaluate the ecological risk of water resources caused by afforestation in the region. In this study, using land cover data, normalized difference vegetation index (NDVI) data, and meteorological data, we performed trend analysis and used the water balance equation and water security index (WSI) to analyze the ecological risks of water resources caused by afforestation in Inner Mongolia from 2000 to 2020. The results show that (1) the afforestation area in Inner Mongolia was 5.37 × 104 km2 in 2000–2020; (2) afforestation in arid and semi-arid areas led to a reduction in water resources; (3) afforestation reduced water resources in the study area by 62 million cubic meters (MCM) per year; and (4) ~76% of afforestation regions faced ecological risks related to water resources. This study provides scientific suggestions for the sustainable development of regional water resources and afforestation

    Improved active power control of virtual synchronous generator for enhancing transient stability

    No full text
    Abstract Virtual synchronous generators (VSGs) are widely used as grid‐forming control converters in the inverter‐dominated power system. Similar to synchronous generators (SGs), there would also be transient instability of VSGs under certain conditions. In this paper, the transient dynamics of VSGs during gird faults are fully investigated based on the large‐signal model. It is revealed that the significant deteriorative of active power control loop (APCL) is the main factor on the transient stability of VSGs. Thus, for enhancing transient stability during grid faults, an integrator‐based feedback loop is introduced for APCL. Then, an enhanced active power control of VSGs is presented with transient stability enhancement during grid faults. Moreover, the impacts of different integral parameters on the transient stability of VSGs are studied. Finally, the validity of the transient stability enhancement of VSGs is demonstrated by the hardware‐in‐loop (HIL) results

    Efficient circularly polarized electroluminescence from achiral luminescent materials

    No full text
    Circularly polarized electroluminescence (CP-EL) with a defined color is generally produced in organic light-emitting diodes (OLEDs) based on CP luminescent (CPL) materials with similar colors. Such kind of many-to-many relationship requires numerous new CPL materials to fabricate CP-OLEDs because the well-developed achiral luminescent materials are rarely considered to be capable of directly producing CP-EL. Herein, the one-to-many strategy is proposed for CP-EL by employing high-performance near ultraviolet CPL materials to sensitize achiral luminescent materials. These newly developed near ultraviolet CPL materials have excellent photoluminescence (PL) quantum yields and good CPL dissymmetry factors, and can induce efficient blue to red CP-PL for achiral fluorescence, phosphorescence, thermally activated delayed fluorescence (TADF) and multi-resonance (MR) TADF materials. Efficient near ultraviolet CP-EL with the best external quantum efficiencies (ηexts) of 9.0% at 404 nm and extremely small efficiency roll-offs are achieved by using them as emitters for CP-OLEDs. By adopting them as hosts or sensitizers, commercially available yellow-orange achiral phosphorescence, TADF and MR-TADF materials can generate strong CP-EL, with absolute dissymmetry factors and outstanding ηexts of up to 2.87 × 10−3 and 30.8%, respectively, which are the state-of-the-art CP-EL performances reported so far, demonstrating a simple and universal avenue towards efficient CP-EL
    corecore