277 research outputs found

    Convergence, Fluctuations and Large Deviations for finite state Mean Field Games via the Master Equation

    Full text link
    We show the convergence of finite state symmetric N-player differential games, where players control their transition rates from state to state, to a limiting dynamics given by a finite state Mean Field Game system made of two coupled forward-backward ODEs. We exploit the so-called Master Equation, which in this finite-dimensional framework is a first order PDE in the simplex of probability measures, obtaining the convergence of the feedback Nash equilibria, the value functions and the optimal trajectories. The convergence argument requires only the regularity of a solution to the Master equation. Moreover, we employ the convergence method to prove a Central Limit Theorem and a Large Deviation Principle for the evolution of the N-player empirical measures. The well-posedness and regularity of solution to the Master Equation are also studied

    On the convergence problem in Mean Field Games: a two state model without uniqueness

    Get PDF
    We consider N-player and mean field games in continuous time over a finite horizon, where the position of each agent belongs to {-1,1}. If there is uniqueness of mean field game solutions, e.g. under monotonicity assumptions, then the master equation possesses a smooth solution which can be used to prove convergence of the value functions and of the feedback Nash equilibria of the N-player game, as well as a propagation of chaos property for the associated optimal trajectories. We study here an example with anti-monotonous costs, and show that the mean field game has exactly three solutions. We prove that the value functions converge to the entropy solution of the master equation, which in this case can be written as a scalar conservation law in one space dimension, and that the optimal trajectories admit a limit: they select one mean field game soution, so there is propagation of chaos. Moreover, viewing the mean field game system as the necessary conditions for optimality of a deterministic control problem, we show that the N-player game selects the optimizer of this problem

    Oscillatory Behavior in a Model of Non-Markovian Mean Field Interacting Spins

    Get PDF
    We analyze a non-Markovian mean field interacting spin system, related to the Curie\u2013Weiss model. We relax the Markovianity assumption by replacing the memoryless distribution of the waiting times of a classical spin-flip dynamics with a distribution with memory. The resulting stochastic evolution for a single particle is a spin-valued renewal process, an example of a two-state semi-Markov process. We associate to the individual dynamics an equivalent Markovian description, which is the subject of our analysis. We study a corresponding interacting particle system, where a mean field interaction-depending on the magnetization of the system-is introduced as a time scaling on the waiting times between two successive particle\u2019s jumps. Via linearization arguments on the Fokker\u2013Planck mean field limit equation, we give evidence of emerging periodic behavior. Specifically, numerical analysis on the discrete spectrum of the linearized operator, characterized by the zeros of an explicit holomorphic function, suggests the presence of a Hopf bifurcation for a critical value of the temperature. The presence of a Hopf bifurcation in the limit equation matches the emergence of a periodic behavior obtained by simulating the N-particle system

    How Broad is Narrow Certiorari?

    Get PDF

    A neural-network approach to radon short-range forecasting from concentration time series

    Get PDF
    The relevance of particulate radon progeny measurements for an estimation of the mixing height was recently established. Here, an attempt at a shortrange forecast of radon concentration is presented using a neural-network model applied at a 2-hour based time series. This forecasting activity leads to useful predictions of the mixing height during stability conditions
    • …
    corecore