14 research outputs found

    IMU rotational motion.

    No full text
    Attitude determination involves the integration of methodologies and systems for estimating the time varying attitude of moving objects. Strapdown Inertial Attitude Measurement System (SIAMS) is among the most widely used navigation systems. The development of cost effective Micro Electro Mechanic System (MEMS) based inertial sensors has made attitude measurement system more affordable. However, MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable attitude results. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper is to develop a MEMS-based rotary SIAMS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer comparable performance with respect to a tactical-grade Inertial Measurement Unit (IMU). With the analysis of the relationship between the MEMS error and misalignment, a MEMS calibration model is derived, and a combined calibration method of multi position rotation is applied to estimate the deterministic sensor errors such as bias, scale factor, and misalignment. Simulation and experiment results indicate that the proposed method can further modulate and compensate the MEMS errors, thereby improving the MEMS attitude accuracy.</div

    Error parameters of inertial elements.

    No full text
    Attitude determination involves the integration of methodologies and systems for estimating the time varying attitude of moving objects. Strapdown Inertial Attitude Measurement System (SIAMS) is among the most widely used navigation systems. The development of cost effective Micro Electro Mechanic System (MEMS) based inertial sensors has made attitude measurement system more affordable. However, MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable attitude results. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper is to develop a MEMS-based rotary SIAMS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer comparable performance with respect to a tactical-grade Inertial Measurement Unit (IMU). With the analysis of the relationship between the MEMS error and misalignment, a MEMS calibration model is derived, and a combined calibration method of multi position rotation is applied to estimate the deterministic sensor errors such as bias, scale factor, and misalignment. Simulation and experiment results indicate that the proposed method can further modulate and compensate the MEMS errors, thereby improving the MEMS attitude accuracy.</div

    The position for MEMS calibration.

    No full text
    Attitude determination involves the integration of methodologies and systems for estimating the time varying attitude of moving objects. Strapdown Inertial Attitude Measurement System (SIAMS) is among the most widely used navigation systems. The development of cost effective Micro Electro Mechanic System (MEMS) based inertial sensors has made attitude measurement system more affordable. However, MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable attitude results. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper is to develop a MEMS-based rotary SIAMS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer comparable performance with respect to a tactical-grade Inertial Measurement Unit (IMU). With the analysis of the relationship between the MEMS error and misalignment, a MEMS calibration model is derived, and a combined calibration method of multi position rotation is applied to estimate the deterministic sensor errors such as bias, scale factor, and misalignment. Simulation and experiment results indicate that the proposed method can further modulate and compensate the MEMS errors, thereby improving the MEMS attitude accuracy.</div

    IMU indexing rotation.

    No full text
    Attitude determination involves the integration of methodologies and systems for estimating the time varying attitude of moving objects. Strapdown Inertial Attitude Measurement System (SIAMS) is among the most widely used navigation systems. The development of cost effective Micro Electro Mechanic System (MEMS) based inertial sensors has made attitude measurement system more affordable. However, MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable attitude results. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper is to develop a MEMS-based rotary SIAMS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer comparable performance with respect to a tactical-grade Inertial Measurement Unit (IMU). With the analysis of the relationship between the MEMS error and misalignment, a MEMS calibration model is derived, and a combined calibration method of multi position rotation is applied to estimate the deterministic sensor errors such as bias, scale factor, and misalignment. Simulation and experiment results indicate that the proposed method can further modulate and compensate the MEMS errors, thereby improving the MEMS attitude accuracy.</div

    Attitude errors caused by the axis misalignment errors of the gyroscopes.

    No full text
    Attitude errors caused by the axis misalignment errors of the gyroscopes.</p

    Simulation parameter configuration.

    No full text
    Attitude determination involves the integration of methodologies and systems for estimating the time varying attitude of moving objects. Strapdown Inertial Attitude Measurement System (SIAMS) is among the most widely used navigation systems. The development of cost effective Micro Electro Mechanic System (MEMS) based inertial sensors has made attitude measurement system more affordable. However, MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable attitude results. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper is to develop a MEMS-based rotary SIAMS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer comparable performance with respect to a tactical-grade Inertial Measurement Unit (IMU). With the analysis of the relationship between the MEMS error and misalignment, a MEMS calibration model is derived, and a combined calibration method of multi position rotation is applied to estimate the deterministic sensor errors such as bias, scale factor, and misalignment. Simulation and experiment results indicate that the proposed method can further modulate and compensate the MEMS errors, thereby improving the MEMS attitude accuracy.</div

    Structure schematic of a typical rotary SIAMS.

    No full text
    Attitude determination involves the integration of methodologies and systems for estimating the time varying attitude of moving objects. Strapdown Inertial Attitude Measurement System (SIAMS) is among the most widely used navigation systems. The development of cost effective Micro Electro Mechanic System (MEMS) based inertial sensors has made attitude measurement system more affordable. However, MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable attitude results. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper is to develop a MEMS-based rotary SIAMS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer comparable performance with respect to a tactical-grade Inertial Measurement Unit (IMU). With the analysis of the relationship between the MEMS error and misalignment, a MEMS calibration model is derived, and a combined calibration method of multi position rotation is applied to estimate the deterministic sensor errors such as bias, scale factor, and misalignment. Simulation and experiment results indicate that the proposed method can further modulate and compensate the MEMS errors, thereby improving the MEMS attitude accuracy.</div

    Attitude errors caused by constant bias of gyroscopes.

    No full text
    Attitude errors caused by constant bias of gyroscopes.</p

    Curves of attitude error with heading changed slowly.

    No full text
    (a) Attitude overall view. (b) Heading partial enlarged view.</p

    Mechanization of the rotary SIAMS.

    No full text
    Attitude determination involves the integration of methodologies and systems for estimating the time varying attitude of moving objects. Strapdown Inertial Attitude Measurement System (SIAMS) is among the most widely used navigation systems. The development of cost effective Micro Electro Mechanic System (MEMS) based inertial sensors has made attitude measurement system more affordable. However, MEMS sensors suffer from various errors that have to be calibrated and compensated to get acceptable attitude results. Given the auto-compensation of inertial sensor bias in rotation error modulation, the objective of this paper is to develop a MEMS-based rotary SIAMS, in which the significant sensor bias is automatically compensated by rotating the IMU, to offer comparable performance with respect to a tactical-grade Inertial Measurement Unit (IMU). With the analysis of the relationship between the MEMS error and misalignment, a MEMS calibration model is derived, and a combined calibration method of multi position rotation is applied to estimate the deterministic sensor errors such as bias, scale factor, and misalignment. Simulation and experiment results indicate that the proposed method can further modulate and compensate the MEMS errors, thereby improving the MEMS attitude accuracy.</div
    corecore