113 research outputs found

    Bilateral Posterior Ischemic Optic Neuropathy in a Patient with Severe Diabetic Ketoacidosis

    Get PDF
    Purpose: To report a case of bilateral posterior ischemic optic neuropathy (PION) in a patient with severe diabetic ketoacidosis (DKA). Design: Observational case report. Participant: A 35-year-old male who suffered bilateral visual loss during a severe episode of DKA. Methods: Neuro-ophthalmological examination, neuroimaging consisting of a CT scan and MRI of the brain and orbits, as well as a MRA of brain vessels. Results: Bilateral PION was diagnosed in a 35-year-old male with no light perception vision, who emerged from a coma caused by severe DKA. The patient developed optic nerve pallor in both eyes 4 weeks after the initial examination. Visual acuity with no light perception in both eyes remained unchanged after 6 months' follow-up. Conclusions: Severe DKA can be complicated by bilateral PION, resulting in total blindness

    Corneal Epithelial Immune Dendritic Cell Alterations in Subtypes of Dry Eye Disease: A Pilot In Vivo Confocal Microscopic Study

    Get PDF
    Citation: Kheirkhah A, Rahimi Darabad R, Cruzat A, et al. Corneal epithelial immune dendritic cell alterations in subtypes of dry eye disease: a pilot in vivo confocal microscopic study. Invest Ophthalmol Vis Sci. 2015;56:7179-7185. DOI:10.1167/ iovs.15-17433 PURPOSE. To evaluate density and morphology of corneal epithelial immune dendritic cells (DCs) in different subtypes of dry eye disease (DED) using in vivo confocal microscopy (IVCM). METHODS. This retrospective study included 59 eyes of 37 patients with DED and 40 eyes of 20 age-matched healthy controls. Based on clinical tests, eyes with DED were categorized into two subtypes: aqueous-deficient (n ¼ 35) and evaporative (n ¼ 24). For all subjects, images of laser scanning in vivo confocal microscopy (IVCM) of the central cornea were analyzed for DC density and DC morphology (DC size, number of dendrites, and DC field). These DC parameters were compared among all dry eye and control groups. RESULTS. Compared with the controls, patients with DED had significantly higher DC density, larger DC size, higher number of dendrites, and larger DC field (all P < 0.001). Comparison between aqueous-deficient and evaporative subtypes demonstrated that DC density was significantly higher in aqueous-deficient subtype (189.8 6 36.9 vs. 58.9 6 9.4 cells/mm 2 , P ¼ 0.001). However, there were no significant differences in morphologic parameters between DED subtypes. When aqueous-deficient DED with underlying systemic immune disease (Sjögren's syndrome and graft versus host disease) were compared with nonimmune conditions, the immunologic subgroup showed significantly higher DC density, DC size, and number of dendrites (all P < 0.05). CONCLUSIONS. Corneal IVCM demonstrated differential changes in DC density and morphologic DC parameters between subtypes of DED. These changes, which reflect the degree of immune activation and inflammation in DED, can be used for clinical practice and endpoints in clinical trials. Keywords: dry eye disease, in vivo confocal microscopy, inflammation, dendritic cells D ry eye disease (DED) is one of the most commonly encountered ophthalmic disorders. It is a multifactorial disease of the ocular surface and tear film, characterized by symptoms of eye irritation, tear instability, and vision impairment. 1 In addition to evaluating symptoms, a variety of clinical tests are currently being used to diagnose DED, including the Schirmer's wetting test, tear break-up time (TBUT), tear osmolarity, and vital dye staining of the ocular surface by fluorescein, Rose Bengal and Lissamine Green. However, complex clinical features of the disease make the diagnosis a challenge in many cases. 2,3 Therefore, there remains a significant need for objective tests, which can be used to accurately diagnose DED and/or monitor therapeutic response in DED and its underlying changes. Recent studies have shown that the immune changes play an important role in the pathogenesis of DED. To evaluate changes in DCs in patients with DED, corneal in vivo confocal microscopy (IVCM) has lately been used. In vivo confocal microscopy is a noninvasive imaging modality that enables studying the cornea at a cellular level

    Tortuosity classification of corneal nerves images using a multiple-scale-multiple-window approach

    Get PDF
    Classify in vivo confocal microscopy corneal images by tortuosity is complicated by the presence of variable numbers of fibres of different tortuosity level. Instead of designing a function combining manually selected features into a single coefficient, as done in the literature, we propose a supervised approach which selects automatically the most relevant combination of shape features from a pre-defined dictionary. To our best knowledge, we are the first to consider features at different spatial scales and show experimentally their relevance in tortuosity modelling. Our results, obtained with a set of 100 images and 20 fold cross-validation, suggest that multinomial logistic ordinal regression, trained on consensus ground truth from 3 experts, yields an accuracy indistinguishable, overall, from that of experts when compared against each other

    Draining Lymph Nodes of Corneal Transplant Hosts Exhibit Evidence for Donor Major Histocompatibility Complex (MHC) Class II–positive Dendritic Cells Derived from MHC Class II–negative Grafts

    Get PDF
    To examine the widely accepted dogmas that corneal grafts lack passenger leukocytes or cells capable of migrating directly to lymph nodes (LNs), we tracked the migration of corneal graft-derived transgenic green fluorescent protein (GFP; Iab) cells into the draining LNs of allogeneic (Iad) recipients. GFP+ cells were identified in cervical LNs several hours after transplantation, and this traffic was significantly enhanced when grafts were placed in inflamed recipient beds. Draining cells were Iab+, CD45+, and CD11c+, and examination of ungrafted corneas revealed numerous similarly CD45+CD11c+CD3−CD8α− cells that uniformly lacked major histocompatibility complex (MHC) class II expression; transmission electron microscopy confirmed the presence of morphologically similar cells. After transplantation, or placement in culture, these CD11c+ cells became class II+ in a time-dependent manner and were capable of allostimulatory function. However, the stimulatory capacity of these cornea-derived dendritic cells (DCs) was suppressed compared with splenic controls. These results demonstrate for the first time that the cornea is endowed with resident DCs that are universally MHC class II− but that are capable of expressing class II antigen after surgery and migrating to draining LNs of allografted hosts. These data refute the tenet that the cornea is immune privileged due to lack of resident lymphoreticular cells or due to antigenic sequestration from systemic immunity

    Two-dimensional plane for multi-scale quantification of corneal subbasal nerve tortuosity

    Get PDF
    Purpose To assess the performance of a novel system for automated tortuosity estimation and interpretation. Methods: A supervised strategy (driven by observers' grading) was employed to automatically identify the combination of tortuosity measures (i.e., tortuosity representation) leading to the best agreement with the observers. We investigated 18 tortuosity measures including curvature and density of inflection points, computed at multiple spatial scales. To leverage tortuosity interpretation, we propose the tortuosity plane (TP) onto which each image is mapped. Experiments were carried out on 140 images of subbasal nerve plexus of the central cornea, covering four levels of tortuosity. Three experienced observers graded each image independently. Results: The best tortuosity representation was the combination of mean curvature at spatial scales 2 and 5. These tortuosity measures were the axes of the proposed TP (interpretation). The system for tortuosity estimation revealed strong agreement with the observers on a global and per-level basis. The agreement with each observer (Spearman's correlation) was statistically significant (αs = 0.05, P < 0.0001) and higher than that of at least one of the other observers in two out of three cases (ρOUR = 0.7594 versus ρObs3 = 0.7225; ρOUR = 0.8880 versus ρObs1 = 0.8017, ρObs3 = 0.7315). Based on paired-sample t-tests, these improvements were significant (P < 0.001). Conclusions: Our automated system stratifies images by four tortuosity levels (discrete scale) matching or exceeding the accuracy of experienced observers. Of importance, the TP allows the assessment of tortuosity on a two-dimensional continuous scale, thus leading to a finer discrimination among images
    corecore