4,561 research outputs found
Fuel/engine/airframe tradeoff study, phase 1
The effects of broadening the specifications for JP-4 and JP-8 fueled on the performance and cost of all USAF aircraft presently using JP-4 as well as those expected to be introduced into the force structure by 1983 are investigated. Test results indicated that there was no impact on engine performance, turbine durability, and coking, however there was a small maintenance cost increase as a result of a small combustor life decrease. Using JP-4 as standard fuel will avoid the use of high demand middle distillate fuels and give producers flexibility. Extensive use of JP-8 in the United States will increase middle distillate demand and cause a slight increase in engine hot-section maintenance. It is also concluded that the maximum allowable freeze point of JP-4 or JP-8 cannot be increased without degrading system performance and safety as critical conditions are approached
Clarifying spherical collapse in coupled dark energy cosmologies
The spherical collapse model is often used to follow the evolution of
overdensities into the nonlinear regime. We describe the correct approach to be
used in coupled dark energy cosmologies, where a fifth force, different from
gravity and mediated by the dark energy scalar field, influences the collapse.
We reformulate the spherical collapse description by deriving it directly from
the set of nonlinear hydrodynamical Navier Stokes equations. By comparing with
the corresponding relativistic equations, we show how the fifth force should be
taken into account within the spherical collapse picture and clarify the
problems arising when an inhomogeneous scalar field is considered within a
spherical collapse picture. We then apply our method to the case of coupled
quintessence, where the fifth force acts among cold dark matter particles, and
to growing neutrino quintessence, where the fifth force acts between neutrinos.
Furthermore, we review this method when applied to standard cosmologies and
apply our analysis to minimally coupled quintessence and check past results for
early dark energy parametrizations.Comment: 16 pages, 13 figures, published in Physical Review D, minor changes
and correction
Mapping Cluster Mass Distributions via Gravitational Lensing of Background Galaxies
We present a new method for measuring the projected mass distributions of
galaxy clusters. The gravitational amplification is measured by comparing the
joint distribution in redshift and magnitude of galaxies behind the cluster
with that of field galaxies. We show that the total amplification is directly
related to the surface mass density in the weak field limit, and so it is
possible to map the mass distribution of the cluster. The method is shown to be
limited by discreteness noise and galaxy clustering behind the lens. Galaxy
clustering sets a lower limit to the error along the redshift direction, but a
clustering independent lensing signature may be obtained from the magnitude
distribution at fixed redshift. Statistical techniques are developed for
estimating the surface mass density of the cluster. We extend these methods to
account for any obscuration by cluster halo dust, which may be mapped
independently of the dark matter. We apply the method to a series of numerical
simulations and show the feasibility of the approach. We consider approximate
redshift information, and show how the mass estimates are degraded.Comment: ApJ in press. 23 pages of LaTeX plus figs. Text & figs available by
anonymous ftp from resun03.roe.ac.uk in directory /pub/jap/lens (you need
btp.tex and apj.sty
Nonlinear Gravitational Clustering: dreams of a paradigm
We discuss the late time evolution of the gravitational clustering in an
expanding universe, based on the nonlinear scaling relations (NSR) which
connect the nonlinear and linear two point correlation functions. The existence
of critical indices for the NSR suggests that the evolution may proceed towards
a universal profile which does not change its shape at late times. We begin by
clarifying the relation between the density profiles of the individual halo and
the slope of the correlation function and discuss the conditions under which
the slopes of the correlation function at the extreme nonlinear end can be
independent of the initial power spectrum. If the evolution should lead to a
profile which preserves the shape at late times, then the correlation function
should grow as [in a universe] een at nonlinear scales. We
prove that such exact solutions do not exist; however, ther e exists a class of
solutions (``psuedo-linear profiles'', PLP's for short) which evolve as
to a good approximation. It turns out that the PLP's are the correlation
functions which arise if the individual halos are assumed to be isothermal
spheres. They are also configurations of mass in which the nonlinear effects of
gravitational clustering is a minimum and hence can act as building blocks of
the nonlinear universe. We discuss the implicatios of this result.Comment: 32 Pages, Submitted to Ap
A Closure Theory for Non-linear Evolution of Cosmological Power Spectra
We apply a non-linear statistical method in turbulence to the cosmological
perturbation theory and derive a closed set of evolution equations for matter
power spectra. The resultant closure equations consistently recover the
one-loop results of standard perturbation theory and beyond that, it is still
capable of treating the non-linear evolution of matter power spectra. We find
the exact integral expressions for the solutions of closure equations. These
analytic expressions coincide with the renormalized one-loop results presented
by Crocce & Scoccimarro (2006,2007). By constructing the non-linear propagator,
we analytically evaluate the non-linear matter power spectra based on the
first-order Born approximation of the integral expressions and compare it with
those of the renormalized perturbation theory.Comment: 22 pages, 4 figures, accepted for publication in Ap
Simulated Extragalactic Observations with a Cryogenic Imaging Spectrophotometer
In this paper we explore the application of cryogenic imaging
spectrophotometers. Prototypes of this new class of detector, such as
superconducting tunnel junctions (STJs) and transition edge sensors (TESs),
currently deliver low resolution imaging spectrophotometry with high quantum
efficiency (70-100%) and no read noise over a wide bandpass in the visible to
near-infrared. In order to demonstrate their utility and the differences in
observing strategy needed to maximize their scientific return, we present
simulated observations of a deep extragalactic field. Using a simple analytic
technique, we can estimate both the galaxy redshift and spectral type more
accurately than is possible with current broadband techniques. From our
simulated observations and a subsequent discussion of the expected migration
path for this new technology, we illustrate the power and promise of these
devices.Comment: 30 pages, 10 figures, accepted for publication in the Astronomical
Journa
A new measure of using the lensing dispersion in high- type Ia SNe
The gravitational lensing magnification or demagnification due to large-scale
structures induces a scatter in peak magnitudes of high redshift type Ia
supernovae (SNe Ia). The amplitude of the lensing dispersion strongly depends
on that of density fluctuations characterized by the parameter.
Therefore the value of is constrained by measuring the dispersion in
the peak magnitudes. We examine how well SN Ia data will provide a constraint
on the value of using a likelihood analysis method. It is found that
the number and quality of SN Ia data needed for placing a useful constraint on
is attainable with Next Generation Space Telescope.Comment: 9 pages, 3 figures. Accepted for publication in The Astrophysical
Journa
On the Onset of Inflation in Loop Quantum Cosmology
Using a Liouville measure, similar to the one proposed recently by Gibbons
and Turok, we investigate the probability that single-field inflation with a
polynomial potential can last long enough to solve the shortcomings of the
standard hot big bang model, within the semiclassical regime of loop quantum
cosmology. We conclude that, for such a class of inflationary models and for
natural values of the loop quantum cosmology parameters, a successful
inflationary scenario is highly improbable.Comment: 16 pages, 6 figures Amended version to appear in Phys. Rev.
The Angular Power Spectrum of EDSGC Galaxies
We determine the angular power spectrum, C_l, of the Edinburgh/Durham
Southern Galaxy Catalog (EDSGC) and use this statistic to constrain
cosmological parameters. Our methods for determining C_l, and the parameters
that affect it are based on those developed for the analysis of cosmic
microwave background maps. We expect them to be useful for future surveys.
Assuming flat cold dark matter models with a cosmological constant (constrained
by COBE/DMR and local cluster abundances), and a scale--independent bias, b, we
find good fits to the EDSGC angular power spectrum with 1.11 < b < 2.35 and 0.2
< Omega_m < 0.55 at 95% confidence. These results are not significantly
affected by the ``integral constraint'' or extinction by interstellar dust, but
may be by our assumption of Gaussianity.Comment: 11 pages, 9 figures, version to appear in Ap
An Improved Semi-Analytical Spherical Collapse Model for Non-linear Density Evolution
We derive a semi-analytical extension of the spherical collapse model of
structure formation that takes account of the effects of deviations from
spherical symmetry and shell crossing which are important in the non-linear
regime. Our model is designed so that it predicts a relation between the
peculiar velocity and density contrast that agrees with the results of N-body
simulations in the region where such a comparison can sensibly be made. Prior
to turnaround, when the unmodified spherical collapse model is expect to be a
good approximation, the predictions of the two models coincide almost exactly.
The effects of a late time dominating dark energy component are also taken into
account. The improved spherical collapse model is a useful tool when one
requires a good approximation not just to the evolution of the density contrast
but also its trajectory. Moreover, the analytical fitting formulae presented is
simple enough to be used anywhere where the standard spherical collapse might
be used but with the advantage that it includes a realistic model of the
effects of virialisation.Comment: 6 pages, 3 figures. Matches the version in print at Astrophys.
- …