59 research outputs found

    Ab initio investigation of the exchange interactions in Bi2_2Fe4_4O9_9: The Cairo pentagonal lattice compound

    Full text link
    We present the \emph{ab initio} calculation of the electronic structure and magnetic properties of Bi2_2Fe4_4O9_9. This compound crystallizes in the orthorhombic crystal structure with the Fe3+^{3+} ions forming the Cairo pentagonal lattice implying strong geometric frustration. The neutron diffraction measurements reveal nearly orthogonal magnetic configuration, which at first sight is rather unexpected since it does not minimize the total energy of the pair of magnetic ions coupled by the Heisenberg exchange interaction. Here we calculate the electronic structure and exchange integrals of Bi2Fe4O9 within the LSDA+U method. We obtain three different in-plane (J3=36 K, J4=73 K, J5=23 K) and two interplane (J1=10 K, J2=12 K) exchange parameters. The derived set of exchange integrals shows that the realistic description of Bi2Fe4O9 needs a more complicated model than the ideal Cairo pentagonal lattice with only two exchange parameters in the plane. However, if one takes into account only two largest exchange integrals, then according to the ratio x\equiv J3/J4=0.49<\sqrt{2} (a critical parameter for the ideal Cairo pentagonal lattice, see. Ref.~1) the ground state should be the orthogonal magnetic configuration in agreement with experiment. The microscopic origin of different exchange interactions is also discussed.Comment: 6 pages, 4 figure

    Magnetism of sodium superoxide

    Full text link
    By combining first-principles electronic-structure calculations with the model Hamiltonian approach, we systematically study the magnetic properties of sodium superoxide (NaO2), originating from interacting superoxide molecules. We show that NaO2 exhibits a rich variety of magnetic properties, which are controlled by relative alignment of the superoxide molecules as well as the state of partially filled antibonding molecular \pi_g-orbitals. The orbital degeneracy and disorder in the high-temperature pyrite phase gives rise to weak isotropic antiferromagnetic (AFM) interactions between the molecules. The transition to the low-temperature marcasite phase lifts the degeneracy, leading to the orbital order and formation of the quasi-one-dimensional AFM spin chains. Both tendencies are consistent with the behavior of experimental magnetic susceptibility data. Furthermore, we evaluate the magnetic transition temperature and type of the long-range magnetic order in the marcasite phase. We argue that this magnetic order depends on the behavior of weak isotropic as well as anisotropic and Dzyaloshinskii-Moriya exchange interactions between the molecules. Finally, we predict the existence of a multiferroic phase, where the inversion symmetry is broken by the long-range magnetic order, giving rise to substantial ferroelectric polarization.Comment: 10 pages, 7 figure

    First principles investigation of exchange interactions in quasi-one-dimensional antiferromagnet CaV2O4

    Full text link
    The effect of orbital degrees of freedom on the exchange interactions in the spin-1 quasi-one-dimensional antiferromagnet CaV2O4 is systematically studied. For this purpose a realistic low-energy model with the parameters derived from the first-principles calculations is constructed. The exchange interactions are calculated using both the theory of infinitesimal spin rotations near the mean-field ground state and the superexchange model, which provide a consistent description. The obtained behaviour of exchange interactions substantially differs from the previously proposed phenomenological picture based on the magnetic measurements and structural considerations, namely: (i) Despite quasi-one-dimensional character of the crystal structure, consisting of the zigzag chains of edge-sharing VO6 octahedra, the electronic structure is essentially three-dimensional, that leads to finite interactions between the chains; (ii) The exchange interactions along the legs of the chains appear to dominate; and (iii) There is a substantial difference of exchange interactions in two crystallographically inequivalent chains. The combination of these three factors successfully reproduces the behaviour of experimental magnetic susceptibility.Comment: 15 pages, 6 figures, supplementary materia

    Theoretical Analysis of Electronic and Magnetic Properties of NaV2_2O4_4: Crucial Role of the Orbital Degrees of Freedom

    Full text link
    Using realistic low-energy model with parameters derived from the first-principles electronic structure calculation, we address the origin of the quasi-one-dimensional behavior in orthorhombic NaV2_2O4_4, consisting of the double chains of edge-sharing VO6_6 octahedra. We argue that the geometrical aspect alone does not explain the experimentally observed anisotropy of electronic and magnetic properties of NaV2_2O4_4. Instead, we attribute the unique behavior of NaV2_2O4_4 to one particular type of the orbital ordering, which respects the orthorhombic PnmaPnma symmetry. This orbital ordering acts to divide all t2gt_{2g} states into two types: the `localized' ones, which are antisymmetric with respect to the mirror reflection yy \rightarrow -yy, and the symmetric `delocalized' ones. Thus, NaV2_2O4_4 can be classified as the double exchange system. The directional orientation of symmetric orbitals, which form the metallic band, appears to be sufficient to explain both quasi-one-dimensional character of interatomic magnetic interactions and the anisotropy of electrical resistivity.Comment: 16 pages, 4 figure

    First Principle Electronic Model for High-Temperature Superconductivity

    Full text link
    Using the structural data of the La2CuO4 compound both in the low temperature tetragonal phase and in the isotropic phase we have derived an effective t-J model with hoppings t and superexchange interactions J extended up to fourth and second neareast neighbors respectively. By numerically studying this hamiltonian we have then reproduced the main experimental features of this HTc compound: d-wave superconductivity is stabilized at small but finite doping delta>6% away from the antiferromagnetic region and some evidence of dynamical stripes is found at commensurate filling 1/8.Comment: 4 pages including 4 figures and 2 table

    Construction of Wannier functions from localized atomic-like orbitals

    Full text link
    The problem of construction of the Wannier functions (WFs) in a restricted Hilbert space of eigenstates of the one-electron Hamiltonian H^\hat{H} (forming the so-called low-energy part of the spectrum) can be formulated in several different ways. One possibility is to use the projector-operator techniques, which pick up a set of trial atomic orbitals and project them onto the given Hilbert space. Another possibility is to employ the downfolding method, which eliminates the high-energy part of the spectrum and incorporates all related to it properties into the energy-dependence of an effective Hamiltonian. We show that by modifying the high-energy part of the spectrum of the original Hamiltonian H^\hat{H}, which is rather irrelevant to the construction of WFs in the low-energy part of the spectrum, these two methods can be formulated in an absolutely exact and identical form, so that the main difference between them is reduced to the choice of the trial orbitals. Concerning the latter part of the problem, we argue that an optimal choice for trial orbitals can be based on the maximization of the site-diagonal part of the density matrix. The main idea is illustrated for a simple toy model, consisting of only two bands, as well as for a more realistic example of t2gt_{2g} bands in V2_2O3_3. An analogy with the search of the ground state of a many-electron system is also discussed.Comment: 13 pages, 6 figure
    corecore