60 research outputs found

    The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: Methodology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient.</p> <p>Results</p> <p>The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing - thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing - thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior.</p> <p>Conclusions</p> <p>The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing - thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.</p

    Restricted-Range Fishes and the Conservation of Brazilian Freshwaters

    Get PDF
    Background: Freshwaters are the most threatened ecosystems on earth. Although recent assessments provide data on global priority regions for freshwater conservation, local scale priorities remain unknown. Refining the scale of global biodiversity assessments (both at terrestrial and freshwater realms) and translating these into conservation priorities on the ground remains a major challenge to biodiversity science, and depends directly on species occurrence data of high taxonomic and geographic resolution. Brazil harbors the richest freshwater ichthyofauna in the world, but knowledge on endemic areas and conservation in Brazilian rivers is still scarce. Methodology/Principal Findings: Using data on environmental threats and revised species distribution data we detect and delineate 540 small watershed areas harboring 819 restricted-range fishes in Brazil. Many of these areas are already highly threatened, as 159 (29%) watersheds have lost more than 70% of their original vegetation cover, and only 141 (26%) show significant overlap with formally protected areas or indigenous lands. We detected 220 (40%) critical watersheds overlapping hydroelectric dams or showing both poor formal protection and widespread habitat loss; these sites harbor 344 endemic fish species that may face extinction if no conservation action is in place in the near future. Conclusions/Significance: We provide the first analysis of site-scale conservation priorities in the richest freshwater ecosystems of the globe. Our results corroborate the hypothesis that freshwater biodiversity has been neglected in former conservation assessments. The study provides a simple and straightforward method for detecting freshwater priority areas based on endemism and threat, and represents a starting point for integrating freshwater and terrestrial conservation in representative and biogeographically consistent site-scale conservation strategies, that may be scaled-up following naturally linked drainage systems. Proper management (e. g. forestry code enforcement, landscape planning) and conservation (e. g. formal protection) of the 540 watersheds detected herein will be decisive in avoiding species extinction in the richest aquatic ecosystems on the planet.Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)Gordon and Betty Moore Foundatio

    Late Byzantine Mineral Soda High Alumina Glasses from Asia Minor: A New Primary Glass Production Group

    Get PDF
    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor

    Differential lipid dependence of the function of bacterial sodium channels

    Get PDF
    The lipid bilayer is important for maintaining the integrity of cellular compartments and plays a vital role in providing the hydrophobic and charged interactions necessary for membrane protein structure, conformational flexibility and function. To directly assess the lipid dependence of activity for voltage-gated sodium channels, we compared the activity of three bacterial sodium channel homologues (NaChBac, NavMs, and NavSp) by cumulative 22Na+ uptake into proteoliposomes containing a 3:1 ratio of 1-palmitoyl 2-oleoyl phosphatidylethanolamine and different “guest” glycerophospholipids. We observed a unique lipid profile for each channel tested. NavMs and NavSp showed strong preference for different negatively-charged lipids (phosphatidylinositol and phosphatidylglycerol, respectively), whilst NaChBac exhibited a more modest variation with lipid type. To investigate the molecular bases of these differences we used synchrotron radiation circular dichroism spectroscopy to compare structures in liposomes of different composition, and molecular modeling and electrostatics calculations to rationalize the functional differences seen. We then examined pore-only constructs (with voltage sensor subdomains removed) and found that in these channels the lipid specificity was drastically reduced, suggesting that the specific lipid influences on voltage-gated sodium channels arise primarily from their abilities to interact with the voltage-sensing subdomains

    Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption.

    Get PDF
    Coffee, a major dietary source of caffeine, is among the most widely consumed beverages in the world and has received considerable attention regarding health risks and benefits. We conducted a genome-wide (GW) meta-analysis of predominately regular-type coffee consumption (cups per day) among up to 91 462 coffee consumers of European ancestry with top single-nucleotide polymorphisms (SNPs) followed-up in ~30 062 and 7964 coffee consumers of European and African-American ancestry, respectively. Studies from both stages were combined in a trans-ethnic meta-analysis. Confirmed loci were examined for putative functional and biological relevance. Eight loci, including six novel loci, met GW significance (log10Bayes factor (BF)&gt;5.64) with per-allele effect sizes of 0.03-0.14 cups per day. Six are located in or near genes potentially involved in pharmacokinetics (ABCG2, AHR, POR and CYP1A2) and pharmacodynamics (BDNF and SLC6A4) of caffeine. Two map to GCKR and MLXIPL genes related to metabolic traits but lacking known roles in coffee consumption. Enhancer and promoter histone marks populate the regions of many confirmed loci and several potential regulatory SNPs are highly correlated with the lead SNP of each. SNP alleles near GCKR, MLXIPL, BDNF and CYP1A2 that were associated with higher coffee consumption have previously been associated with smoking initiation, higher adiposity and fasting insulin and glucose but lower blood pressure and favorable lipid, inflammatory and liver enzyme profiles (P&lt;5 × 10-8).Our genetic findings among European and African-American adults reinforce the role of caffeine in mediating habitual coffee consumption and may point to molecular mechanisms underlying inter-individual variability in pharmacological and health effects of coffee

    Cryopreservation of mammalian oocytes and embryos: current problems and future perspectives

    Full text link

    Cloning and functional characterization of a superfamily of microbial inwardly rectifying potassium channels.

    No full text
    Our understanding of the mammalian inwardly rectifying family of K+ channels (Kir family) has recently been advanced by X-ray crystal structures of two homologous prokaryotic orthologs (KirBac1.1 and KirBac3.1). However, the functional properties of these KirBac channels are still poorly understood. To address this problem, we cloned and characterized genes encoding KirBac orthologs from a wide variety of different prokaryotes and a simple unicellular eukaryote. The functional properties of these KirBacs were then examined by growth complementation in a K+ uptake-deficient strain of Escherichia coli (TK2420). Whereas some KirBac genes exhibited robust growth complementation, others either did not complement or showed temperature-dependent complementation including KirBac1.1 and KirBac3.1. In some cases, KirBac expression was also toxic to the growth of E. coli. The KirBac family exhibited a range of sensitivity to the K+ channel blockers Ba2+ and Cs+ as well as differences in their ability to grow on very low-K+ media, thus demonstrating major differences in their permeation properties. These results reveal the existence of a functionally diverse superfamily of microbial KirBac genes and present an excellent resource for the structural and functional analysis of this class of K+ channels. Furthermore, the complementation assay used in this study provides a simple and robust method for the functional characterization of a range of prokaryotic K+ channels that are difficult to study by traditional methods
    corecore