4 research outputs found

    Room Temperature Synthesis of a Covalent Monolayer Sheet at Air/Water Interface Using a Shape-Persistent Photoreactive Amphiphilic Monomer

    No full text
    The shape-persistent monomer <b>3</b> with its three 1,8-diazaanthracene (DAA) units is spread and compressed at the air/water interface and the layer then converted into a 1.5 nm thick covalent monolayer sheet by photoirradiation under ambient conditions. The sheet obtained under these extremely mild conditions is mechanically stable to carry its own weight when spanned over TEM grids. While its molecular structure cannot be given yet with certainty, it is likely to be the result of [4 + 4]-cycloaddition dimerizations between the DAA units of neighboring monomers. Evidence is based on the wavelength of the monomer fluorescence emission, the kinetics of this emission’s intensity decay with irradiation time, and the mechanical sheet stability that suggests a surpassing of percolation threshold. Finally, the thermal stability of the sheet is investigated

    Large Area Synthesis of a Nanoporous Two-Dimensional Polymer at the Air/Water Interface

    No full text
    We present the synthesis of a two-dimensional polymer at the air/water interface and its nm-resolution imaging. Trigonal star, amphiphilic monomers bearing three anthraceno groups on a central triptycene core are confined at the air/water interface. Compression followed by photopolymerization on the interface provides the two-dimensional polymer. Analysis by scanning tunneling microscopy suggests that the polymer is periodic with ultrahigh pore density

    Polydopamine Films from the Forgotten Air/Water Interface

    No full text
    The formation of polydopamine under mild oxidation conditions from dopamine solutions with mechanical agitation leads to the formation of films that can functionalize all kinds of materials. In the absence of stirring of the solution, we report the formation of polydopamine films at the air/water interface (PDA A/W) and suggest that it arises from an homogeneous nucleation process. These films grow two times faster than in solution and can be deposited on hydrophilic or hydrophobic substrates by the Langmuir–Schaeffer technique. Thanks to this new method, porous and hydrophobic materials like polytetrafluoroethylene (PTFE) membranes can be completely covered with a 35 nm thick PDA A/W film after only 3h of reaction. Finally the oxidation of a monomer followed by a polymerization in water is not exclusive to polydopamine since we also transferred polyaniline functional films from the air/water interface to solid substrates. These findings suggest that self-assembly from a solution containing hydrophilic monomers undergoing a chemical transformation (here oxidation and oligomerization) could be a general method to produce films at the liquid/air interface

    A Two-Dimensional Polymer from the Anthracene Dimer and Triptycene Motifs

    No full text
    A two-dimensional polymer (2DP) based on the dimerization of anthraceno groups arranged in a triptycene motif is reported. A photoinduced polymerization is performed in the crystalline state and gives a lamellar 2DP via a crystal-to-crystal (but not single-crystal to single-crystal) transformation. Solvent-induced exfoliation provides monolayer sheets of the 2DP. The 2DP is considered to be a tiling, a mathematical approach that facilitates structural elucidation
    corecore